
DAP Data Model Specification
DRAFT

James Gallagher∗, Nathan Potter†, Tom Sgouros

Printed: November 6, 2004
Revision: 1.68

Contents

1 Introduction . 3
1.1 Lexicographical Conventions . 4

2 Variables . 4
2.1 Atomic variables . 5

2.1.1 Integer types . 5
2.1.2 Booleans . 6
2.1.3 Enumerations . 6
2.1.4 Floating point types . 7
2.1.5 String types . 7
2.1.6 Binary images . 8

2.2 Constructor variables . 9
2.2.1 Array . 9
2.2.2 Structure . 9
2.2.3 Grid . 10
2.2.4 Sequence . 11

2.3 Names . 12
2.3.1 Constructor variable names . 12
2.3.2 Fully Qualified Names . 13

2.4 Variable Aliases . 13

3 Attributes . 14
3.1 Attribute Aliases . 15
3.2 Processing Attributes . 15

4 Constraint Expressions . 16
4.1 Limiting data by type and by value . 16

4.1.1 Projections . 16

∗The University of Rhode Island, jgallagher@gso.uri.edu
†Oregon State University, ndp@coas.oregonstate.edu

1

4.1.2 Selections . 18
4.1.3 Server Functions . 20

4.2 Data Type Transformation Through Constraints . 21

5 Client/Server Interaction . 21
5.1 Request and Response Information . 22

6 Responses . 23
6.1 DDX . 23
6.2 XML Schema . 25

6.2.1 XML Schema Validation . 25
6.3 DDX XML Elements . 26

6.3.1 Alias . 26
6.3.2 Array . 27
6.3.3 Attribute . 28
6.3.4 Binary . 32
6.3.5 Blob . 33
6.3.6 Boolean . 33
6.3.7 Byte . 34
6.3.8 Dataset . 34
6.3.9 dimension . 35
6.3.10 Enumeration . 36
6.3.11 enum . 36
6.3.12 Float32 . 37
6.3.13 Float64 . 37
6.3.14 Grid . 38
6.3.15 Int16 . 40
6.3.16 Int32 . 41
6.3.17 Int64 . 41
6.3.18 Map . 42
6.3.19 Sequence . 43
6.3.20 String . 44
6.3.21 Structure . 44
6.3.22 Time . 45
6.3.23 UInt16 . 45
6.3.24 UInt32 . 46
6.3.25 UInt64 . 46
6.3.26 URL . 47
6.3.27 Time . 47
6.3.28 value . 48

6.4 Encoding Rules . 48
6.4.1 Attribute and variable Alias source attribute encoding 49
6.4.2 Project element variable encoding . 49
6.4.3 Select element target encoding . 49
6.4.4 Base 64 Attribute value encoding . 49
6.4.5 XML document encoding . 49

6.5 Blob . 50
6.5.1 Length Specification: Representing lengths of encoded data elements 50
6.5.2 Blob framework and reliable error delivery . 50

2

6.5.3 Atomic Types . 51
6.5.4 Constructor Types . 51

6.6 ErrorX . 53
6.7 ErrorX XML Elements . 53

6.7.1 Error . 53
6.8 Server Capabilities Document . 54
6.9 Server Capabilities Document XML Elements . 54

6.9.1 Description . 54
6.9.2 Function . 55
6.9.3 Parameter . 55
6.9.4 Version . 56

7 Constraint . 57
7.1 Constraint XML Elements . 57

7.1.1 Constraint . 57
7.1.2 Hyperslab . 58
7.1.3 NoAttributes . 58
7.1.4 Project . 59
7.1.5 Select . 59

7.2 Constraint examples . 60

References . 61

A XML Schema . 61

B Error Codes . 61

C Change log . 62

1 Introduction

This document describes the Data Model of the OPeNDAP! (OPeNDAP) 1 Data Access Protocol (DAP) Ver-
sion 4.0. The data model is the framework—the set of data types and representations—with which the DAP
represents the contents of a data source. The data model also encompasses the objects in which these data types
are encoded: the replies with which an OPeNDAP server responds to requests for data.

This document contains several sections.

Section 2 (page 4) defines what is meant by a data source and describes the kinds of variables a data source
may contain. These variables include the basic atomic types, and the more complex constructor types.

Section 3 (page 14) All DAP variables can have Attributes to describe them further. Representation of this
information is described here.

Section 4 (page 16) Variables in a data source may be sampled by means of a constraint expression, defined
in this section.

1Note that OPeNDAP refers to a project, managed by OPeNDAP, Inc., a Rhode Island not-for-profit corporation, while DAP! (DAP)
refers to the Data Access Protocol which is a central component of the OPeNDAP project.

3

Section 5 (page 21) describes the interaction between a client requesting data and the server providing it.

Section 6 (page 23) The variables in a data source are given their persistent representation in the data objects
defined here. This is the representation used to communicate between a server and client.

The DAP is independent of the lower-level communication protocols used to implement it, such as HTTP,
FTP, GridFTP, et cetera. DAP implementations currently exist for several communication protocols. HTTP
is the most commonly-used implementation, and a separate document, DAP Web Services Specification, is
available from the OPeNDAP project to specify its use. The OPeNDAP project does not issue specifications
for implementations using other protocols. This is left to the groups making the implementation.

A note about terminology. In this document, the words ”client” and ”server” are meant only to imply a program
making a request via the DAP and another program making a reply via the DAP, respectively. The two programs
are probably running on machines remote from one another, but this is not essential. Like WWW clients and
servers, there can be (and are) many different varieties of DAP clients and servers. The only thing that ties them
together is that the client making the request and the server fulfilling it follow the strictures of this specification.

The DAP specification describes the dialog between requesting clients and responding servers, but it does not
specify the implementation of that dialog. So long as your program can hold up its end of the conversation, there
is no limit on how it is done. Specifically, this means that though the DAP specifies the persistent representation
of its abstract data types (this is the form taken by a message), it does not specify the data structures that may
implement these data types in a computer program. This also means that the programs can use any means
to transport the requests and responses, although the DAP protocol has been designed with protocols such as
SOAP over HTTP, GridFTP, et c., in mind.

1.1 Lexicographical Conventions

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY” and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119.[?]

The DAP data model contains a model element called an Attribute. XML element tags also contain attributes.
In order to avoid confusion in this document when we are referring to OPeNDAP Attributes we will capitalize
the first letter (“A”). When we are referring to XML attributes we will not capitalize the first letter (“a”). In the
event that this distinction is not adequate we will endeavor to make the distinction clear, either from context or
from additional illuminating language.

NOTE: Suggestion: Drop the capitalized ‘Attribute’ and say ‘XML attribute’ where appropriate. Relying
on capitalization confuses people.

2 Variables

The DAP characterizes a data source as a collection of variables. Each variable consists of a name, a type,
a value, and a collection of Attributes. Attributes, in turn, are themselves composed of a name, a type, and a
value (Section 3 on page 14). The distinction between information in a variable and in an Attribute is somewhat

4

arbitrary.2 However, the intention is that Attributes hold information that aids in the interpretation of data held
in a variable.3 Variables, on the other hand, hold the primary content of a data source.

Each variable in a data source MUST have a name, a type and some value or values. Using just this information
and armed with an understanding of the definition of the DAP data types, a program can read any or all of the
information from a data source. The names and types of a data source’s variables constitute its syntactic
metadata.[?]

The DAP variables come in several different types. There are several atomic types, the basic indivisible types
representing integers, floating point numbers and the like, and four constructor types (also called container
types) which can be used to define new types by combining instances of both the atomic and constructor types.

This section describes the abstractions that constitute the variable type menagerie: the range of values and
the kind of data each type can represent. For each abstract variable type, there is a more concrete persistent
representation, which is the information actually communicated between a DAP server and DAP clients. The
persistent representation consists of two parts: the declaration of the type and the encoding of its value(s). For a
description of the persistent representation see Section 6 (page 23) . To see how the types are to be declared, see
Section 6.1 (page 23) . For the encoding of these variable types (how they are to be packaged for transmission)
see Section 6.5 (page 50) .

Each variable MAY have one or more Attributes associated with it. For information about Attributes, see
Section 3 (page 14) .

2.1 Atomic variables

As their name suggests, atomic data types are indivisible. There are no constraint expression operators 4 that
can be used to request part of an instance of one of these types (Section 4 on page 16). Atomic variables are
used to store integers, enumerations, booleans and real numbers as well as strings, URLs and times. There are
four families of atomic types, with each family containing one or more variation:

• Integer, Boolean and Enumeration types

• Floating-point types

• String types

• Binary images

2.1.1 Integer types

The integer types are summarized in Table 1. Each of the types is loosely based on the corresponding data type
in ANSI C [?]. However, the DAP, unlike ANSI C, does specify the bit-size of each of the integer types. This
is done so that when values are transfered between machines they will be held in the same type of variable, at
least within the limits of the software that implements the DAP.

2This is especially true in the case of global Attributes; see Section 3 (page 14) for information about global attributes.
3Attributes appear in many data storage systems such as netCDF[?], HDF4[?] and HDF5[?]. They also appear under the moniker

‘property’ in Common Lisp[?].
4Section 4 (page 16)

5

NOTE: move this to a more appropriate section, maybe its own. . . Maybe a section that combines the
length spec and other stuff that is used in several places. jhrg 11/2/03

When implementing the DAP, it is important, of course, to match information in a data
source or read from a DAP response to the local data type which best fits those data. In some
cases an exact match may not be possible. For example Java lacks unsigned integer types[?].
Implementations faced with such limitations MUST ensure that clients will be able to
retrieve the full range of values from the data source. As a practical consideration, this may
be implemented by hiding the variable in question or returning an error.

If a variable is automatically hidden (i.e., the server analyzes the data source and determines
that a particular variable cannot be represented correctly and automatically removes it from
those variables made accessible using the DAP, this MUST be noted by adding a global
Attribute to the data source indicating this has taken place. The note MUST include the name
of the variable(s) and the reason(s) for their exclusion. If a variable is removed by a human,
this Attribute is OPTIONAL.

In their persistent representation in the DAP, integer values MUST stored as twos-compliment big-endian
numbers.5 See Section 6.5.3 (page 51) .

Table 1: The DAP Integer Data types.

name description range
Byte 8-bit unsigned char 0 to 28 − 1
Int16 16-bit signed short integer -215 to 215 − 1
Uint16 16-bit unsigned short integer 0 to 216 − 1
Int32 32-bit signed integer -231 to 231 − 1
Uint32 32-bit unsigned integer 0 to 232 − 1
Int64 64-bit signed integer -263 to 263 − 1
Uint64 64-bit unsigned integer 0 to 264 − 1

2.1.2 Booleans

Data which can take on only one of two values, true or false, may be represented using the Boolean data type.
This type is used by data storage software such as HDF5[?] and data communication specifications such as
ASN.1[?].

See Section 6.5.3 (page 51) for the description of how Booleans are encoded for transmission.

2.1.3 Enumerations

An Enumeration is used to represent a set of discrete named values. The values MUST be integers between
−231 and 231 − 1. No value may be used more than once. The intent is that the size of the set will be small; an

5Big-endian is the default byte order for data transmissions, but see Section 5.1 (page 22) regarding negotiation of byte order.

6

Table 2: The DAP Boolean type.

name description
Boolean One of two possible values: either true or false.

Enumeration should not be used to represent a set of thousands or millions of values, although there’s nothing
in principle preventing such a use. To represent the values, a signed 32-bit integer is used. An Enumeration
MUST include a symbolic name for each integer value.

See Section 6.5.3 (page 51) for the description of how Enumerations are encoded for transmission.

Table 3: The DAP Enumeration type.

name description
Enumeration a set of unique discrete integral values between −2 31

and 231 − 1, each enumerated and bound to symbol.

2.1.4 Floating point types

The floating point data types are summarized in Table 4. The two floating point data types use IEEE 754 [?] to
represent values. The two types correspond to ANSI C’s float and double data types.

In their persistent representation, floating point values MUST be stored by default using big-endian notation. 6

See Section 6.5.3 (page 51) .

Table 4: The DAP Floating Point Data types.

name description range
Float32 IEEE 32-bit floating point

[?]
±1.175494351× 10−38 to
±3.402823466× 1038

Float64 IEEE 64-bit floating point ±2.2250738585072014× 10−308 to
±1.7976931348623157× 10308

2.1.5 String types

The string data types are summarized in Table 5. There are three. The first is a simple string type corresponding
to the ANSI C notion of a string: a series of Unicode (ISO 10646) characters. The DAP uses the UTF-8
encoding of Unicode characters.

There is no limit to the size of a String; the length is specified using a Length Specifiaction (See Section 6.5.1
on page 50). Unicode characters can each be several bytes long, but note that UTF-8 encoding is identical

6Big-endian is the default byte order for data transmissions, but see Section 5.1 (page 22) regarding negotiation of byte order.

7

to US-ASCII encoding for character values up to 127 (hexadecimal 7f). This means that strings that contain
only characters from the 7-bit ASCII set are one byte per character, and use the standard ASCII encoding.
Characters from 128 to 255 (hex 80 to ff) are encoded into two bytes in UTF-8 [?].

The DAP also provides a URL data type which is the same as String except that it MUST be limited to standard
(7-bit) US-ASCII characters, , due to the limitations of the syntax of Internet URLs[?], and has the specific
meaning of a pointer to some WWW resource. If the W3C definition of a URL should change, the DAP
definition will change to conform to the W3C definition.

In DAP applications this is usually used to refer to another data source, in a manor reminiscent of a C pointer.]

The last string type the DAP provides is the Time data type which is the same as String except that it MUST
have the specific syntax of an ISO8601[?] date/time string.

The ISO Date/Time standard provides a way to encode dates, both local and UTC times and time ranges[?].
The Time data type is included in the DAP so that date and time information may be represented in a standard
fashion.

In general, most data sources will not use ISO8601 date-time strings; servers SHOULD provide both the
native representation of date-time information and the ISO8601 representation. This will allow savvy clients
to exploit the native representation while more generic clients can access the data source without the need to
accommodate its quirks.

Strings are individually sized. This means that in constructor data types containing multiple instances of some
String, such as Sequences and Arrays, successive instances of that String MAY be of different sizes.

See Section 6.5.3 (page 51) for other details of the persistent representation of Strings.

Table 5: The DAP String Data types.

name description
String a series of Unicode (UTF-8) characters.
URL a series of US-ASCII characters (the Internet doesn’t

support Unicode in URLs), meant to represent an on-
line resource somewhere, usually another data source.

Time a series of Unicode (UTF-8) characters which contain
a valid ISO 8601 date/time string.[?]

2.1.6 Binary images

Binary Images are7 uninterpreted, opaque, lumps of digital data. There is no limit to the size of a Binary Image;
the length MUST be specified using a Length Specifiaction (See Section 6.5.1 on page 50).

Binary Images are meant as a way for a server to pass elaborate data types to a client without having to encode
them in the DAP data model. For example, a digital sound clip, say an MP3 file, could be represented as a
one-dimensional DAP Array of integer values. But if the server stores these as MP3 files, and the client can
play them as such, then it may not be efficient to convert from MP3 to the DAP Array and then back again. 8

7Paul suggests ’MUST be’ in place of ’are.’ I’m not sure jhrg 12/8/03.
8Note that, as with the case of the MP3, the word ”images” does not necessarily refer to image data, though obviously you can use a

Binary Image to transmit GIF data, for example. The word only implies that the binary data within a Binary Image is uninterpreted, and
MUST be preserved intact through any representation transformation.

8

Binary Images are individually sized. This means that in constructor data types containing multiple instances
of some image, such as Sequences and Arrays, successive instances of that Binary Image MAY be of different
sizes.

See Section 6.5.3 (page 51) for the description of how binary images are encoded for transmission.

2.2 Constructor variables

The constructor types are assembled from collections of other variables. A constructor type MAY contain both
atomic and constructor types. There are no restrictions on the number of levels of nesting.

There are four constructor data types:

• Array

• Structure

• Grid

• Sequence

2.2.1 Array

An Array is a one-dimensional indexed data structure similar to that defined by ANSI C. An Array’s member
variable MAY be of any DAP data type.

Multidimensional Arrays are defined as Arrays of Arrays. Multi-dimensional Arrays MUST be stored in row-
major order (as is the case with ANSI C). The size of each Array’s dimensions MUST be given. There is no
limit to the size or number of an Array’s dimensions; the length MUST be specified using a Length Specifiaction
(See Section 6.5.1 on page 50).

Each dimension of an Array MAY also be named.

Arrays of Strings and binary images MAY contain elements of varying lengths. However, multi-dimensional
Arrays MUST have rows of the same length and columns of the same length.

If you need a data structure which has varying row lengths or an indeterminate number of rows, consider a
Sequence of Sequences or a Sequence of Arrays. Note that in the latter case, a Sequence of Arrays, each
instance of the array MUST be the same size.9

See Section 2.2.4 (page 11) for more about the possibilities and the limitations.

2.2.2 Structure

A Structure groups variables so that the collection can be manipulated as a single item. The Structure’s mem-
ber variables MAY be of any type, including other constructor types. The order of items in the Structure is
significant only in relation to the persistent representation of that Structure.

There is a special case of the Structure data type, called Dataset. This is the container that encompasses all the
variables provided in some data source.

9The types of the variables comprised bya Sequence MUST be the the same for each instance (i.e. ’row’) of that Sequence. For arrays,
the ’shape’ is part of the type.Where the protocol demands that Sequence be used, an interface for client application programs is free to
make those look like arrays with varying lengths.

9

2.2.3 Grid

NOTE: Suggestion: Change this so that there is no distinction between target and map(s). make all arrays
in a Grid have an equal footing. The Grid indicates that the elements are related but does not
specify which is an independent or dependent variable.

A Grid is a special case of a Structure, used to supply information to aid in the interpretation of Arrays. A
Grid sets up an association between a target Array and a collection of map Arrays. Each dimension of the
target array MUST correspond to one or more dimensions of the map arrays. For example, a two-dimensional
target array could map to a collection of identically-sized two-dimensional map arrays, or to an assortment
of one-dimensional map vectors. A three dimensional array might map to a collection of one-, two-, and
three-dimensional map arrays.

A common use for this kind of data might be raw satellite data, where measurements are frequently not on
a regular latitude-longitude grid. In the example shown, data values (z mn) can be associated with arbitrary
latitude (ymn) and longitude (xmn) values, while still retaining their gridded nature. One can easily add a time
dimension to the collection, as well. The result is that any element in the target array has a corresponding
latitude, longitude, and time value.

target =




z11 z21 · · · zm1

z12 z22 · · · zm2

z13 z23 · · · zm3

...
...

. . .
...

z1n z2n · · · zmn




maplongitude =




x11 x21 · · · xm1

x12 x22 · · · xm2

x13 x23 · · · xm3

...
...

. . .
...

x1n x2n · · · xmn




maplatitude =




y11 y21 · · · ym1

y12 y22 · · · ym2

y13 y23 · · · ym3

...
...

. . .
...

y1n y2n · · · ymn




maptime =




t1
t2
t3
...
tn




This Grid indicates that each z value zij corresponds to the values of the longitude and latitude maps at
(i, j). It also indicates that each row of zi (and longitudei and latitudei) correspond to an element of the
column vector time. Such a data structure might be used to hold satellite data before it has been processed into
a picture. In that case the z target array might be a reflectance value from the satellite’s sensor, the longitude
and latitude maps would provide the latitude and longitude for each pixel in z and the time map would hold
the time at which each scan line was collected.

A Grid MUST always contain a target array, MUST contain at least one map array. The only other requirement
is that each dimension of the target array MUST correspond to one or more dimensions in the map arrays. The
arrays in the Grid—target or map— MAY be an Alias to arrays somewhere else in the dataset (Section 2.4 on
page 13). This can save transmission bandwidth by avoiding the repetition of data when maps are common to
more than one Grid.

A special case of Grid is an association of an N dimensional Array with N vectors (one-dimensional map
vectors), each of which has the same number of elements as the corresponding dimension of the Array. Each

10

vector is used to map indexes of one of the Array’s dimensions to a set of values which are normally non-integer
(e.g., floating point values).

Schematically, the special case of the Grid is like the following:
[

x1 x2 x3 · · · xm

]



y1

y2

y3

...
yn







z11 z21 z31 · · · zm1

z12 z22 z32 · · · zm2

z13 z23 z33 · · · zm3

...
...

...
. . .

...
z1n z2n z3n · · · zmn




Each column of the z Array corresponds to an entry in the x map vector, and each row of z corresponds to
some y value. So, for example, the data value at z42,33 corresponds to the values x42 and y33.

The Grid type was created to deal with geo-located data, with irregular spacing of the rows and columns, which
is useful when converting to and from different map projections. But the Grid structure is more generally useful.
For example, one of the map vectors could be an Array of (x, y) pairs (stored in a Structure), and the other a
series of time values, and the Grid would become a record of several synoptic time series. The maps MUST
be Arrays, but the Arrays MAY be collections of any DAP data type except Sequence, Grid, Binary Image, or
Enumeration.10

2.2.4 Sequence

A Sequence can best be described as an ordered collection of zero or more Structures. Each instance in the
series consists of the same set of variables, but contains different values.

NOTE: Not enough of a description. We need to state that the set of types in the declaration is used to
define a set of instances, etc. And we need to clean up the example maybe replacing the s 11-type
notation with something a little more verbose so the idea that each column is s different variable
and they can be of different type is made explicit.

The semantics of the Sequence data type are very close to those of a table in a relational database. You can
think of the instances in a Sequence as rows in a traditional relational table. OPeNDAP servers that serve data
from a DBMS like Oracle or mySQL use Sequences to reflect the structure of their data.

A Sequence S can be represented as:

s11 s21 · · · sn1

s12 s22 · · · sn2

...
...

. . .
...

s1i s2i · · · sni

...
...

...
...

10This restriction has been put in place to keep writing general clients tractable. If the set of data types in a Grid’s map Arrays is allowed
to be a Sequence, for example, any general client would have to be capable of processing that data type in a response. Such a client would
be very hard to build.

11

Where each s1 · · · sn entry represents a set of DAP variables, and the collection of such entries constitutes the
Sequence. Every entry of Sequence S MUST have the same number, order, and type of variables. If s 21 is a
Float64, then all the s2i will also be Float64 variables. Similarly, in a Sequence which contains an Array or
Structure, each instance of the Array or Structure will be the same size. However, a Sequence MAY contain a
Sequence and each instance of the interior Sequence MAY have a different number of entries. Also, unlike an
Array, a Sequence has no explicit size.

NOTE: Though the semantics of Sequences places limitations on the kinds of requests a client may make
of a server, once the Sequence has been retrieved, a client program may reference it in any way
desired. The DAP defines the persistent representation of data types, and the interaction between
client and server (which includes what kinds of requests can be made for what kind of variables),
but the DAP does not specify the internal implementation of the data types for any client or
server.

2.3 Names

A DAP variable’s name MUST contain ONLY UTF-8 characters. However, some interfaces may require that
any characters not part of US-ASCII be escaped so that the names are represented in US-ASCII. 11

2.3.1 Constructor variable names

The members of a constructor variable can be individually addressed in the following fashion:

Array Individual items MUST be addressed with a subscripted expression. For an Array named Temp, the
fourteenth member of the Array is referenced as Temp[13] (all indexes start at zero). A two-dimensional
Array is addressed with two subscripts, contained in separate brackets: SurfaceTemp[13][3]. See
Section 4 (page 16) .

Structure Members of the Structure are addressed by appending the member name to the Structure name,
separated by a forward slash (/). If the Structure Position has a member named Height, then it is
addressed as Position/Height. The members of a Structure MUST have different names from one
another.

Grid The arrays in a Grid MAY be referenced in the same fashion as the members of a Structure. For a
two-dimensional Grid named Cloud, with one-dimensional map vectors Latitude and Longitude, a
member of a map vector is be addressed like this: Cloud/Latitude[36]. This refers to a single latitude
value. You can also request part of the target array: Cloud/Cloud[36][42], which will return a single
data measurement. The Grid itself MAY be addressed like an Array: Cloud[36][42], which will return
the same value as Cloud/Cloud[36][42], but as a Grid. See Section 4.2 (page 21) for an explanation
of how data types are transformed by constraints.

Sequence A Sequence member is addressed in the same fashion as a Structure. That is, a time called
Releasedate of a Sequence named Balloons is addressed as Balloons/Releasedate. But note that
unlike a Structure, this name references as many different values as there are entries in the Balloons
Sequence. A single entry or range of entries in a Sequence MAY be addressed with a hyperslab operator
like the items in an Array. The variables in a Sequence MUST have different names from one another.

11The HTTP GET interface from OPeNDAP will require this if it’s implemented for DAP 4.

12

2.3.2 Fully Qualified Names

Variables and Attributes exist in the same name-space. This impacts the way that datasets can be organized. A
variable and an Attribute may not have the same name at the same lexical level of a dataset. This is primarily
of concern for constructor variables; if a constructor variable has a member variable named time then it MAY
NOT also have an Attribute named time. This rule allows the fully qualified name of each Attribute and variable
in a Dataset to be unique. Note that variables each hold an anonymous Attribute structure which is accessed
using the variable’s name.

NOTE: Glenn has suggested making each variable a structure where attributes are simply variables that
carry an ‘attribute’ tag.

Variable Names The fully qualified name of a variable is composed of the ordered collection of variable
names, starting at the Dataset level but not including the Dataset name, that can be followed to the terminal
variable name. The names MUST be separated by the slash (“/”) character, and the fully qualified name MUST
begin with the slash (“/”) character. Said another way, the fully qualified name of any variable in a Dataset
is the concatenation of the variable’s name, preceded by the forward slash separated list of the names of the
Constructor variables that contain it. The first name MUST be a variable name at the Dataset level preceded
by a forward slash. Thus, if a Dataset named test contains a structure named sst which contains a variable
named foo, the fully qualified name would be /sst/foo.

Attribute Names The fully qualified name of an Attribute is composed of the ordered collection of variable
and Attribute names, starting at the Dataset level but not including the Dataset name, that can be followed
to the terminal source Attribute. The names MUST be separated by the slash (“/”) character, and the fully
qualified name MUST begin with the slash (“/”) character. If a fully qualified name for an Attribute terminates
with a regular variable name, then it will be interpreted to refer to the collection of Attributes associated with
said variable. Thus, if a Dataset named test contains a structure named sst which contains a variable named
foo, the fully qualified name of the Attributes of foo would be /sst/foo. If foo possessed an Attribute named
fruit then the fully qualified name for fruit would be /sst/foo/fruit.

2.4 Variable Aliases

NOTE: Suggestion: Since what we’re trying to do is set up a scheme whereby a variable with one name
can be refereed to using another name, lets do just that. We can get around the problem of things
crossing into and out of a Sequence by limiting the scheme to one that operates within a given
lexical scope. At the same time we can add a mechanism to Grid that provides a way for it to use
a Map defined somewhere else.

A variable in a DAP data source might contain no data of its own, but simply be a pointer to some other variable
in the set. Such a variable is called an Alias. An Alias is useful for achieving compatibility with other data
sources, for conforming to metadata requirements, and for conserving bandwidth in large data transmissions.

A variable Alias MAY refer only to another variable. It MAY NOT refer to an Attribute. It MAY NOT refer to
another variable Alias.

13

An Alias MUST be defined using the fully qualified name (see Section 2.3.2 on page 13) of the variable to which
it refers. This means that if a Dataset called test contains a Structure called S that contains both a variable
called V and a variable Alias directed at that variable called M, then M MUST reference V as /test/S/V.

There are significant restrictions on the use of Aliases in conjunction with the Sequence data-type. An Alias
member of a Sequence MAY refer to a member variable of the same Sequence. An Alias member of a Sequence
MAY NOT refer to a variable outside of the Sequence. This may seem a little arbitrary at first, but consider that
every member variable of a Sequence is multi-valued. It makes little sense to allow an Alias to refer to such a
variable, unless the Alias exists in the same dimensional space. This can only be guaranteed if the Alias is a
member of the same Sequence as the variable to which it refers.

See the discussion of the Alias element in Section 6.3.1 (page 26) for specific information about the syntax of
an Alias.

3 Attributes

Each variable in a data source MAY have zero or more Attributes associated with it. The entire dataset (see
Section 2.2.2 on page 9) MAY itself have Attributes, too. These are called global Attributes . All Attributes
are held within Attribute structures, even when there is only one Attribute associated with a variable. Every
variable acts as an Attribute structure. This includes the Dataset type, which contains the global Attributes.

While the DAP does not require any particular Attributes, some may be required by various metadata conven-
tions. The semantic metadata for a data source comprises the Attributes associated with that data source and
its variables.

The data model for Attributes is somewhat simpler than that for variables. An Attribute MAY be a set of 1 or
more values of the same atomic type, OR it MAY be a Structure that contains other Attributes, but not individual
values. In other words an Attribute MAY be a list of values of the same atomic type, or it MAY be a container
containing additional Attributes. An Attribute MAY NOT contain both values and other Attributes.

An Attribute’s value MAY be any of the following atomic types:

• Boolean

• Byte

• Int16

• UInt16

• Int32

• UInt32

• Int64

• UInt64

• Enumeration

• Float32

14

• Float64

• String

• Time

• URL

An Attribute that contains other Attributes MUST be of type structure or modifier.

There are two special types of Attributes: modifier and alias. Attributes of type alias are discussed in
Section 3.1 (page 15) . Attributes of type modifier are discussed in Section 3.2 (page 15) .

There are examples of Attribute definitions in the description of the Attribute element in Section 6.3.3 (page 28)
.

3.1 Attribute Aliases

A special type of Attribute is alias. In a manner comparable to a variable Alias (see Section 2.4 on page 13),
a variable’s Attributes MAY also be aliased, with an Attribute of one name referring to a different Attribute
(possibly with a different name). An Attribute of one variable MAY be an alias that refers to an Attribute of
another variable. Attribute aliases MAY only refer to Attributes. They MAY NOT refer to variables or other
Attribute aliases.

An Attribute alias MUST be defined using the fully qualified name of the Attribute to which it refers. See
Section 2.3.2 (page 13)

See the discussion of the Attribute alias type in Section 4 (page 28) for specific information about the syntax
of an Attribute alias.

3.2 Processing Attributes

The processing Attributes are a special set of Attributes used to record modifications to a dataset’s Attributes
or its data. After a dataset is released, other people may copy the data and make it available in modified
form, or with secondary data products added, or with Attribute information that may make the data conform
to some data standard. However useful these modifications might be, it is essential that users of some dataset
be able to determine which parts of that set are original, and which have been added subsequent to the original
publication. The processing Attributes exist to provide a way to create an “audit trail” that will permit users to
determine how a dataset has been modified.

The key piece of information is a global Attribute of type modifier, which is essentially the signature of the
organization that has performed the modification. A modifier Attribute contains:

• A DAP URL for the original source of data.

• The name or description of the organization that is providing the modified data.

• The URL of the service which has introduced the changes.

The details of the modifier attribute’s syntax is described in Section 5 (page 28) .

Attributes of type modifier MAY only appear at the top level of a data set. They MAY not be used as
members of other Attributes or of other variable Attribute structures. Example 7 on page 31 shows an example
of a modifier Attribute.

15

4 Constraint Expressions

A constraint expression provides a way for DAP client programs to request certain variables, or parts of certain
variables, from a dataset. Many datasets are large and many variables in datasets are also large. Often clients
are interested in only a small number of values from the entire dataset. Constraint expressions provide a way
for clients to tell a server which variables, and in many cases, which parts of those variables, they would like.
In addition, the constraint expression can be used to request that the server to omit the Attribute information
from a DDX.12

This section presents the subsampling abilities that MUST be provided by a DAP server. It does so without
binding these capabilities to any particular syntax; see Section 7 (page 57) for the XML representation of
a constraint expression. Some transport protocols may choose to implement additional syntaxes but MUST
implement the syntax described in Section 7.

Note that an empty constraint expression implies that the entire data source is to be accessed.

4.1 Limiting data by type and by value

A constraint expression provides two different methods to access the information held by a data source. The
constraint expression can be used to limit data using the names of variables or by scanning variables and
returning only those values that satisfy certain relational expressions. The former are referred to as projections
while the latter are called selections.

A constraint expression MAY combine both projection and selection constraints. For example, a projection
might specify that temperatures held in a Sequence are to be returned, and a selection would specify that only
Sequence entries with dates later than 1999 are to be examined. The result returned from a request like this
would be a Sequence of temperature measurements taken after 1999.

Section 4.1.1 (page 16) describes the projection operations which any DAP implementation MUST support
and, likewise, Section 4.1.2 (page 18) describes the required selection operations.

To provide implementors with a means to extend the constraint expression mechanism, it is possible to add
functions to a server and to call those as part of the constraint expression. Functions are described in Sec-
tion 4.1.3 (page 20) .

4.1.1 Projections

The projection clause of a constraint expression provides a way to choose parts of a data set based on the shape
of the Dataset and the variables that it comprises. There are two types of projection operations. First, it is
possible to choose individual fields of the constructor data types. This is called field projection and applies to
the Structure, Grid and Sequence data types in the following ways:

Structure A field projection which chooses one or more fields from a Structure variable causes a DAP server
to return only those named fields from the Structure. Note that the Dataset itself is a Structure.

Grid A field projection which chooses one or more fields from a Grid variable causes a DAP server to return
only those named fields from the Grid. It is likely that the variable returned will no longer meet the
criteria for a correctly formed Grid data type, so the variable may be returned as a Structure instead (see
Section 4.2 on page 21).

12Section 6.1 (page 23) .

16

Sequence A field projection which chooses one or more fields from a Sequence variable causes a DAP server
to return only those named fields from the Sequence. For the Sequence type, this means returning the N
instances but limiting the fields those given in the field projection. For example, suppose the Sequence S
has p fields:

s11 s21 s31

s12 s22 s32

...
...

...
s1i s2i s3i

...
...

...

If a field projection is used to choose only the second field, the result of accessing S would be:

s21

s22

s23

s24

...

The second type of projection is a hyperslab. A hyperslab is used to limit returned data to those elements
that fall within a range of index values, and MAY also specify that the range be subsampled using a stride.
By including a hyperslab projection for one or more dimensions of a variable it is implied that any unnamed
dimensions are to be returned in their entirety. 13 A hyperslab is applied to the Array, Grid and Sequence types
in the following way:

Array Array dimensions are numbered 0, . . . , N − 1 for an Array of rank N . Within each dimension of size
M , elements are numbered 0, . . . , M − 1. A hyperslab projection for dimension n, 0 ≤ n < N MUST
include the starting index ins and ending index ine such that ins ≤ ine∀{0 ≤ in < M}. If a stride
is included in the hyperslab and is greater than ine − ins then the hyperslab is equivalent to one where
ins = ine and the original value of ine is discarded.

Grid Grid dimensions are numbered as are Array dimensions; Grid dimensions MAY have hyperslab projec-
tions applied to them in a manner similar to Arrays except that a hyperslab applied to a Grid is applied
to not only the target array, but also all the corresponding map arrays. For example, given the Grid:

target =




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


map1 =




−53 −52 −51 −50
−52 −51 −50 −49
−51 −50 −49 −48
−50 −49 −48 −47


map2 =




26 25 24 23
25 24 23 22
24 23 22 21
23 22 21 20




A hyperslab projection which chose row indexes 1 and 2 and column indexes 1 and 2 would cause a
server to return:

target =
[

6 7
10 11

]
map1 =

[−51 −50
−50 −49

]
map2 =

[
24 23
23 22

]

for the Grid.
13For some interfaces, it may be necessary to place more restrictions on hyperslab projections.

17

Note that a field and hyperslab projection can be combined for a Grid to choose only part of one of the
fields, say just part of the the target Array. In this case, the hyperslab applied to one field of the Grid is
equivalent to a hyperslab applied to an Array. Effectively, the field projection yields an Array and the
hyperslab is then applied to that Array.

Sequence A hyperslab can be applied to a Sequence. A Sequence with M instances can have a hyperslab
projection applied to it as if it is an Array of rank 1. Since the Sequence type does not contain an explicit
dimension size, the size M is not known until the entire Sequence is accessed. 14 A hyperslab projection
can be used to ask for the first m elements, the next m elements, etc., which may be very useful for
clients which need to know the sizes of varaibles before accessing them. A hyperslab projection for a
Sequence (is, ie) will return m instances of the Sequence such that m = �ie, M − 1� − is depending on
whether ie is an index greater than the number of instances in the Sequence.

It is possible to ask for values from several variables in a single constraint expression by including several
projections in the constraint expression. Also note that an empty constraint expression, by convention, projects
all of every variable in a data source.

4.1.2 Selections

A selection provides a way to limit data accessed based on the value(s) of those data. In many ways selections
are similar to WHERE claues in SQL[?]. A selection is composed of one or more relational sub-expressions.
Each sub-expression MUST be bound to a variable listed in a projection clause. When several sub-expressions
constitute a selection, the boolean value of the selection is the logical AND of each of the boolean values of each
sub-expression. Note that there is no way to perform a logical OR operation on the sub-expressions but there is
a way, within a sub-expression, to test several values and return true if any satisfy the releation.

Each of the relational sub-expressions (i.e., relations) is composed of two operands and a relational operator.
Each operand MUST be an atomic data type; it MAY be a fully qualified name from the data source or a
constant. In some cases there are further limitations on the allowed types based on the relational operator.
Table 6 lists the operators, their meaning and the data types on which they may be applied.

The operands in a relation MAY be either single or multi-valued. If an operand has more than one value, each
value is used in succession when evaluating the relation. For example, suppose there is a relation:

site = {“Diamond St′′, “Blacktail Loop′′}

Then that relation is true for any instance where site is either “Diamond St” OR “Blacktail Loop”.

Selections MAY be applied to Sequence and Grid data types in the following ways:

Sequence Logically, the relations in a selction bound to a Sequence are evaluated once for every instance (i.e.,
row) of the Sequence; the result of applying the selection to the Sequence is a Sequence where all of the
instances satisfy all of the relations.

A Sequence S with three fields and four instances such as:

index temperature site
10 17.2 Diamond St
11 15.1 Blacktail Loop
12 15.3 Platium St
13 15.1 Kodiak T rail

14For many Sequence variables, it may never be the case that the entire Sequence is accessed since it may contain millons of instances.

18

Table 6: DAP Selection Relational Operators

Operator Meaning Types
< Less than Byte, Int16, Int32, Int64, UInt16,

UInt32, UInt64, Enumeration,
Float32, Float64, Time

<= Less than or equal to Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Enumeration,
Float32, Float64, Time

> Greater than Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Enumeration,
Float32, Float64, Time

>= Greater than or equal to Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Enumeration,
Float32, Float64, Time

= Equal Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Boolean, Enumer-
ation, Float32, Float64, String, Url,
Time

!= Not equal Byte, Int16, Int32, Int64, UInt16,
UInt32, UInt64, Boolean, Enumer-
ation, Float32, Float64, String, Url,
Time

=~ Regular expression match String, Url, Time

19

A selection such as index>=11 would choose the last three instances:

index temperature site
11 15.1 Blacktail Loop
12 15.3 Platium St
13 15.1 Kodiak T rail

The selection site=~ ".*_St" would choose two instances:

index temperature site
10 17.2 Diamond St
12 15.3 Platium St

And a selection with the two sub-expressions index<=11, site=~".*_St" would return only one in-
stance:

index temperature site
10 17.2 Diamond St

Grid When selections are applied to Grids with multi-dimensional map arrays, the returned data MUST be the
smallest rectangular (contiguous) subset of the Grid that contains all the data that satisfies the constraint.
For example, suppose there is a Grid which has a target array of rank two and two map arrays, each of
which also have rank two, such as:

target =




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


 lat =




−53 −52 −51 −50
−52 −51 −50 −49
−51 −50 −49 −48
−50 −49 −48 −47


 lon =




26 25 24 23
25 24 23 22
24 23 22 21
23 22 21 20




Suppose the Grid is constrained by a selection clause that limits returned values to those where lat is
greater than 24.5 and lon is less than -50.5. The Grid returned by such a constraint would be:

[
1 2
5 6

] [−53 −52
−52 −51

] [
26 25
25 24

]

Notice that one point is returned that does not satisfy the Select provision. Grids MUST be rectangular.

4.1.3 Server Functions

A constraint expression MAY also use functions executed by the server. These can appear in a selection or in a
projection, although there are restrictions about the data types functions can return.

A function which appears in the projection clause MAY return any of the DAP data types. In this case the
return value of the function is treated as if it is a variable present in the top level of the Dataset.

A function which appears in the selection clause MAY return any atomic type if it is used in one of the relational
sub-expressions. If a function in the selection clause is used as the entire sub-expression, it MUST return a
Boolean value.

When functions encounter an error, a DAP server MUST signal that condition by returning an error response.
A server MAY NOT return a partial response; any error encountered while evaluating the constraint expression
MUST result in a response that contains an unambiguous error message.

20

4.2 Data Type Transformation Through Constraints

When a constraint expression has a projection clause that identifies a piece of a constructor variable, such as
one field of a Structure or just the array part of a Grid, the lexical scoping of the variable is not abandoned.
This is important for avoiding name collisions. For example, if you request only one item from a Structure,
you get a Structure returned that has only one member variable.

Here is the behavior for each data type:

Array An Array MUST be returned as an Array of the same rank as the source Array. A hyperslab request
that effectively eliminates a dimension by reducing its size to 1 does not reduce the rank of the returned
Array. For example, suppose a 10 by 10 element Array was subsampled to a 1 by 2 Array. The returned
variable would still be described as a two dimensional Array.

Structure A Structure MUST bereturned as a Structure. If the projection clause of a constraint expression
selects only one member of the Structure, then a one-member Structure MUST be returned. If more than
one member of the Structure are named in the projection clause, they MUST be returned in the same
Structure.

Grid A Grid modified with a hyperslab operator MUST return another Grid, following the same rules as an
Array. But if the projection clause specifies the elements of the Grid independently of one another—
the target array, or one of the maps—then a Structure is returned containing only the specified vari-
ables. A two-dimensional Grid named Cloud will return a Grid in response to a request like this:
Cloud[1:10][20:30]. But a request for the target array alone—Cloud/Cloud[1:10][20:30]— will
return a Structure called Cloud containing an Array called Cloud. The map arrays will not be returned.

A Grid modified with a selection MUST remain a Grid. The return value of such a constraint MUST be
the smallest rectangular Grid that contains all the data points that satisfy the given constraint. Further,
the rank of the Grid MUST remain the same. A four-dimensional Grid, when sampled with a selection
clause, MUST return a four-dimensional Grid, even if some of the dimensions are of length one.

Sequence A Sequence MUST be returned as a Sequence, even if a selection clause selects only a single entry
or no entry at all. If a projection clause identifies more than one member of the Sequence, they MUST
be returned in the same Sequence.

NOTE:

What about allowing selection based on Attribute content? Say, all variables with origin=“helena”? All
variables with a Attribute named “units”? All variables with an Attribute named “units” whose value is
“cm”?

This might be difficult, but well worth the effort.

5 Client/Server Interaction

The DAP is based on the request/response paradigm for client-server interaction. 15 This section provides
an overview of the requests and responses (i.e., the messages) which DAP-compliant servers MUST support.

15Should we add a reference to Fielding, “REST” here?

21

These messages are used to request information about the capabilities of a server, about data made accessible by
that server, as well as requesting data values themselves. The latter—the messages that access a particular data
source—use the previously described data model. The other messages use simpler documents with contents
that do not need a formal abstract definition.

The table below provides a description of the DAP messages. The precise details of the requests and responses
are described in Section 6 (page 23) and Section 7 (page 57) . The mechanism used to communicate those
requests and responses to/from a client and server depend on the transport protocol in use. (Consult DAP Web
Services Specification for an HTTP implementation.) But whatever the protocol, a server MUST be able to
provide the responses outlined in Table 7.

Table 7: DAP Requests and Responses

Requests Response
Data, MAY include a constraint expression
(Section 4 on page 16)

DDX (Section 6 on page 23)

Data (binary) Blob (Section 6.5 on page 50)
Characteristics of server Capabilities document (Section 4.1.3 on

page 20)
ErrorX object (Section 6.6 on page 53)

For a client to get data from a server takes at minimum two exchanges, first to request the DDX, and second
to get the Blob. The DAP is at root a stateless protocol. The server is not required to remember anything from
one request to another. A client has the responsibility to make the two requests correspond.

If a constraint expression is included in a request for a DDX, the returned DDX MUST contain a Blob reference
that refers to the constrained data.

In addition to these data objects, a DAP server MAY provide additional “services” which clients may find
useful. The HTTP implementation of the DAP, for example, provides HTML-formatted representations of a
dataset’s structure and a way to get data represented in CSV-style ASCII tables. These additional services are
not described in this document; they are considered specific to different transport protocols and are described
by the specifications for those particular protocols (such as the DAP Web Services Specification document).

5.1 Request and Response Information

The following information MAY be included in ANY request-response interaction between a DAP client-server
pair. Because different transport protocols often provide ways to encode this type of information (e.g., HTTP
provides a way to encode the date of the response), a concrete syntax for representing this information is not
presented here; that syntax MUST be included in the transport-specific DAP specification.

Compression DAP clients that can process compressed responses MUST be provided a way to indicate this
to a server. A server MAY compress a response ONLY if a client has indicated that it can process the
compressed response. A server is NEVER under an obligation to compress a response.

Support for particular compression algorithms is specific to the transport protocol.

User agent DAP clients MAY provide information about the client software to the server. DAP servers MAY
log this information. Note that when requested, DAP servers MUST provide their version and software
information to clients and do so using a special response.

22

Date Servers MUST provide a date stamp which conforms to RFC 1033 in their responses, and they SHOULD
also provide the last modification date, also conformant to RFC 1033, of the data requested.

Byte Order DAP clients MUST be able to indicate their native byte order to a server. A server MAY choose
to use little-endian byte order with a client that indicates that is its native byte order. By default the
DAP uses big-endian byte order for all data exchanges. All DAP clients MUST be able to understand
responses in big-endian byte order.

Floating-point Format Like the byte order, a client and server that agree on a floating-point format different
than the IEEE 754 standard used by the DAP should be able to communicate that fact to each other, and
skip converting data only to convert it back. A client MUST be able to indicate its preferred floating-
point format; a server MUST be able to respond with floating-point value encoded using IEEE 754 and
DOES NOT have to honor a client’s request for data to be delivered in a different representation.

6 Responses

In order to pass data from server to requester, the data needs to be transformed into a representation both
can understand. In the same way that the idea behind a book needs to be written down and printed in order
to transfer the idea from the writer to the reader, a dataset—an abstract set of numbers and the relationships
between them—needs to be transformed into a more tangible form in order to be communicated.

For the DAP, this form is called the persistent representation.16 This is to contrast it with the representations
used within the memory of some program that can process this data, which of course only persist as long
as the program is running. The persistent representation may also be contrasted with the file format used to
store some data on a disk somewhere. File formats, though persistent, tend to be specific to particular machine
architectures. The DAP needs a data representation that can be understood by all the clients and server programs
likely to be used on it.

Under the DAP, there are four categories of information that pass from the server to the client: information
about data, the data itself, error messages, and information about the server. The first three of these correspond
to the three important DAP data objects: the DDX, Blob, and ErrorX objects. Information about a DAP server
is provided by version messages and the Server Capabilities Document. These are described in detail in this
section.

Some of the details about how DAP data objects are transmitted from server to client are specific to the com-
munication protocol used. For these details relevant to the HTTP version of the DAP, see DAP Web Services
Specification. For a description of the data objects described by the DDX object, see Section 2 (page 4) and
Section 3 (page 14) .

6.1 DDX

The DDX is an XML representation of the structure of all or part of a data set, as well as a description of the
variables within that Dataset. A data set’s structure is its constituent variables plus its global attributes. Each
variable, has a name, type, value, zero or more Attributes and an optional origin. The Dataset itself is modeled
as a Structure variable and so has its own set of Attributes. These attributes are the Dataset’s global attributes.

16Sometimes the persistent representation is called the network representation.

23

The values of variables are encoded in the Blob object, and are only indirectly part of the DDX object. Attribute
values, however, are recorded directly in the DDX. The constraint expression mechanism can be used to request
a DDX that does not contain any Attribute information (see Section 7 on page 57)

The DDX is intended to be a way for client programs to both learn about the contents of a data source and then
to access some or all of the information held by that data source. It is possible to ask a DAP server to send
a DDX which describes only a portion of the data source’s complete content (e.g., to send only one variable
within the data source) and to limit that to only the first 100 by 100 elements (see Section 4 (page 16) for
information about constraint expressions). In normal operation a client program will ask a server for the DDX
for an entire Dataset, determine the variables in which it is interested and then request a second DDX that
contains only those variables using a constraint expression. It will ignore the Blob reference in the first DDX
and use the Blob in the second to access the values it wants.

When clients access the information held in a data source’s variable, they do so using the Blob. It is the Blob
which is used to transfer that information from the data source, via a server, to the client. A DDX provides
descriptive information about the data source, the names, types and Attributes held by the data source. The
DDX also provides a reference to the Blob that holds that information. When a client requests the DDX for an
entire data source, it is sent a DDX which contains a reference to the Blob which, in turn, will return the values
of the all the variables. The client is under no obligation to access a Blob and the server need not ‘create’ it.
The server’s contract is simply that, if asked, it will return the Blob.

Each DDX holds not only the name and type of each variable, but also its Attributes. Attributes do not have
their values accessed using a separate document/object as variables do; their values are included in the DDX.
If a client is to make several requests from a single data source, it is important to avoid the needless repetition
of the Attribute information. It is possible, therefore, using the constraint expression, to ask a data source to
return a DDX which contains no Attribute information.

Example 1:

Here is an example DDX which contains a single two dimensional array. The Dataset also contains a single
global Attribute:

24

<Dataset name="fnoc1.nc’’
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.opendap.org/ns/OPeNDAP"
xsi:schemaLocation="http://www.opendap.org/ns/OPeNDAP
http://dods.coas.oregonstate.edu:8080/opendap/opendap.xsd" >

<Attribute name="Description" type="String">
<value>Fleet Numerical Wind Data</value>

</Attribute>

<Array name="u">
<Attribute name="long_name" type="String">

<value>U_Wind_Vector</value>
</Attribute>

<Float32/>

<dimension size="16" name="latitude"/>
<dimension size="17" name="longitude"/>
<dimension size="21" name="time"/>

</Array>

<Blob URL="http://dcz.opendap.org/dap/data/nc/fnoc1.nc?u"/>
</Dataset>

NOTE: Each of the XML elements used to declare a variable has a name attribute. The XML Schema
(the rigorous definition) for the syntax of the XML document declares that the name attribute is
optional. In practice this is not the case, with one exception. Consider that, without a name, there
is no way for a client to ask for a variable. The only exception to this is the template variable for
an Array. Each Array has a single child element which declares the type of the Array. Naming
the child element is redundant (see Section 6.3.2 on page 27), and if named the name will be
ignored.

6.2 XML Schema

The syntax and rules for the DDX document are encapsulated (to the extent possible) in an XML schema. The
XML schema language is not adequate to completely define and enforce the rules for the DDX. The description
of the DDX elements in Section 6.3 (page 26) constitutes the complete list of rules and syntax for the DDX.

6.2.1 XML Schema Validation

The XML schema is used to validate DDX documents as part of parsing them into memory resident software
entities. The act of validating an instance of the DDX against the schema guarantees that the DDX will fulfill
all of the syntax rules encapsulated in the schema, thus allowing subsequent software in the processing chain
to take as “true” a large number of facts about the content and structure of the instance of the DDX document.

25

OPeNDAP servers MUST validate their DDX documents before sending them in response to a request. OPeN-
DAP clients MAY validate the returned DDX document, but this is seen as non-essential as the servers should
be providing correct DDX instances.

6.3 DDX XML Elements

This section contains the detailed syntax descriptions of all of the component elements of a DDX.

6.3.1 Alias

This element creates a second name for some dataset variable. References to the Alias MUST produce the same
results as a reference to the Alias target identified in the source attribute. See Section 2.4 (page 13) .

The following Alias declaration creates a second name for a variable named pepper, part of a structure
named spice. With this declaration in place, you can refer to the same value with three different names:
/spice/pepper, /spice/poivre and /goeswithsalt.

Example 2: <Dataset name="test">
<Structure name="spice">

<Float64 name="pepper"/>
<Alias name="poivre" source="/spice/pepper"/>

</Structure>
<Alias name="goeswithsalt" source="/spice/pepper"/>
<Blob URL="..."/>

</Dataset>

Element Attributes

name [Required] The name of the Alias.

source [Required] The name of the variable to which this Alias refers (the target variable). The name given
here MUST be a fully qualified name (See Section 2.3.2 on page 13) and MAY NOT refer to a member
variable of a Sequence. Similarly , if the Alias is member of a Sequence, then it MAY NOT refer to a
variable outside of it’s parent Sequence. See Section 2.4 (page 13) for more details.

role [Conditional] The role that the Alias will play as a member of a Grid. The only acceptable values are
array and map. This attribute MUST be used if the Alias is a member variable of a Grid, as either the
Array or the Map. This attribute MUST NOT be used if the Alias is not a member element of a Grid.
See Example 15 on page 39 and Example 16 on page 40 for usage examples.

origin [Conditional] The modifier that added this Alias to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15)

Child Elements None.

26

6.3.2 Array

Declares an Array variable. See Section 2.2.1 (page 9) for a description of Arrays.

Element Attributes

name [Required] The name of the Array.

origin [Conditional] The modifier that added this Array to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15)

Child Elements

dimension [Required] Each dimension element MUST correspond to a dimension of the Array. The order
of the dimension elements MUST indicate the order of the dimensions of the Array. As is the case
with ANSI C[?] and C++[?], the rightmost dimension varies fastest. At least one dimension element is
REQUIRED; there is no upper bound on the number of dimensions.

Attribute [Optional] The Attributes for this Array.

Template variable declaration [Required] The template variable defines the data type of each element of the
Array. An Array MUST have exactly one template variable which MAY be any type with the exception
that it MUST NOT be an Alias or an Array itself.17 The name attribute of the template variable is
OPTIONAL, and MUST be ignored if used. The name of the Array is defined by the name attribute of
the Array element. The template variable is not directly accessible through the data model.

Child element syntax:

• Zero or more Attributes followed by

• One template variable element followed by

• One or more dimension elements.

Here is an array of 72 64-bit floating point values: Example 3: <Array name="values">
<dimension size="72"/>
<Float64/>

</Array>

=======

Here is an array of structures:

Example 4: <Array name="time_series">
<Structure>

<Float64 name="X_velocity"/>
<Float64 name="Y_velocity"/>

</Structure>
<dimension size="72"/>

</Array>

17Unlike C, et c., in the DAP multi-dimensional arrays are not built up using arrays or arrays.

27

6.3.3 Attribute

Use this element to attach Attribute values to a variable. Every variable MUST have a name, type, and value.
Beyond that, it MAY have an arbitrary number of Attributes. See Section 3 (page 14) for more detail about
what Attributes are and how they are used.

If a variable element has Attribute elements, then the Attribute elements MUST immediately follow the variable
element opening tag.

An Attribute MAY contain multiple values of the same type (in essence a one-dimensional array), or it MAY
contain other Attributes. It MAY NOT contain both values and Attributes.

Example 5 on page 30 contains a syntax example of Attributes.

Attribute Aliases

Attribute elements MAY have a type of alias. An alias typed Attribute MAY refer to any other Attribute in
the dataset. If an Attribute is of type alias its XML declaration MUST have a source attribute whose value
is the fully qualified name in the dataset of the Attribute to which the alias refers. See Section 2.3.2 (page 13)
. There are specific rules for encoding the value of the source attribute. Rules for encoding the value of the
source attribute MUST be applied prior to encoding the content for it’s XML representation. See Section 6.4
(page 48) for the details of this encoding.

Example 6 on page 30 contains a syntax example for alias typed Attributes.

Processing Attributes

Attribute elements MAY have a type of modifier. Attributes of type modifier MUST be global (exist at the
top level of the Dataset) and MAY not be used as members of other Attributes or of other variable Attribute
structures. See Section 3.2 (page 15)

Attributes of type modifier MUST contain the following elements:

origin server An Attribute of type URL whose name MUST be origin server and whose value is the URL
for the original data source.

organization An Attribute of type String whose name MUST be organization and whose value MUST be
the name or the description of the organization that is providing the modified data.

modifying service An Attribute of type URL whose name MUST be modifying service and whose value
MUST be the URL of the service that introduced the changes.

A syntax example of a modifier typed Attribute can be found in Example 7 on page 31.

Element Attributes

name [Required] A string containing the name of the Attribute.

type [Required] The type of this Attribute’s value. This MUST be one of the following:

• Boolean

28

• Byte

• Int16

• UInt16

• Int32

• UInt32

• Int64

• UInt64

• Float32

• Float64

• String

• URL

• modifier

• alias

• structure

An Attribute of type structure has a syntax comparable to that of a Structure variable. Binary Images and
Enumerations are not permitted Attribute types.

source [Conditional] A string containing the name of the source Attribute for an Attribute of type alias.
Used only of the Attribute is of type alias.

origin [Conditional] The modifier that added this Attribute to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15)

Child Elements

value [Conditional] One or more child value elements, allowed ONLY if there are no child Attribute elements.

Attribute [Conditional] One or more child Attribute elements, allowed ONLY if there are no child value
elements.

Child element syntax:

• One or more Attribute elements OR,

• One or more value elements

One of the following:

• One or more Attribute elements

• One or more value elements

29

Example 5:

Here are examples of the Attribute element syntax.

<Dataset name="test" >
<Structure name="measurement">

<Attribute name="date" type="String">
<value>18 Mar 03</value>

</Attribute>
<Attribute name="other" type="Structure">

<Attribute name="satellite_name" type="String">
<value>GOES</value>

</Attribute>
<Attribute name="experiment number" type="int32">

<value>986743</value>
</Attribute>
<Attribute name="team" type="String">

<value>Baker</value>
<value>Charlie</value>
<value>Dogg</value>

</Attribute>
</Attribute>
<Array name="time_series"

<dimension size="32"/>
<Float64 name="value"/>

</Array>
</Structure>
<Blob URL="..."/>

</Dataset>

Example 6:

This example shows the use of alias typed Attributes.

30

<Dataset name="test" >
<Structure name="measurement">

<Attribute name="team" type="structure">
<Attribute name="lead engineer" type="String">

<value>Chet Baker</value>
</Attribute>
<Attribute name="software engineer" type="String">

<value>Charlie Parker</value>
</Attribute>
<Attribute name="electrical engineer" type="String">

<value>Ozzy Osbourne</value>
</Attribute>

</Attribute>
<Float64 name="value"/>
<Array name="time_series">

<Attribute name="author"
type="alias"
source="/measurement/team/software engineer" />

<dimension size="32"/>
<FLoat32/>

</Array>
</Structure>
<Blob URL="..."/>

</Dataset>

Example 7:

In this example of the use of a modifier Attribute, the AIS server at ais.gso.uri.edu added a variable called
sst, and an Attribute called “units” to the variable called Depth.

31

<Dataset name="test">
<Attribute name="helena" type="modifier">

<Attribute name="origin_server" value="http://dods.gso.uri.edu/cgi/nph-nc"/>
<Attribute name="modifying_service" value="http://ais.gso.uri.edu"/>
<Attribute name="organization" value="URI/GSO"/>

</Attribute>
.
.
.

<Float64 name="Depth">
<Attribute name="units" type="String" origin="helena">

<value>meters</value>
</Attribute>

</Float64>
.
.
.

<Array name="sst" origin="helena">
.
.
.

</Array>
<Blob URL="..."/>

</Datset>

6.3.4 Binary

Declares a Binary Image. This is MUST be18 an atomic type of arbitrary size with an undeclared internal
structure. See Section 2.1.6 (page 8) .

The size of a binary image MUST be encoded in the Blob object, so declaring it in the Binary element is
optional. For a constructor which holds Binary Images, declaring the size here is a convenience for clients
and is OPTIONAL. Doing so can increase the efficiency of clients which have to deal with the data after
downloading it. If the size of a Binary Image is declared in a Constructor type such as Sequence, all instances
of the Binary Image MUST be the declared size.

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

size [Optional] The size of the image, in bytes.

origin [Conditional] The modifier that added this Binary Image to the document. Used only if this element
was added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

18Does this make sense?

32

Child Elements

Attribute [Optional] The Attributes for this Binary Image.

Child Element Syntax

• Zero or more Attribute elements

Example 8: <Binary name="sound_sample" size="17256"/>

6.3.5 Blob

Blob MUST be the URL the reference to the serialized binary data content described by this DDX. See Sec-
tion 6.5 (page 50) .

Element Attributes

URL [Required] A string containing the web address of the Blob object associated with this DDX.

Child Elements None

See Example 1 on page 24.

6.3.6 Boolean

A variable that MUST be one of two values: true or false. See Section 2.1.2 (page 6) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Boolean to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Boolean.

33

Child Element Syntax

• Zero or more Attribute elements

Example 9: <Boolean name="QC">
<Attribute name="long_name" type="String">

<value>Quality Control Flag</value>
</Attribute>

</Boolean>

6.3.7 Byte

Declaration of an eight-bit unsigned integer. See Section 2.1.1 (page 5) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Byte to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Byte.

Child Element Syntax

• Zero or more Attribute elements

Example 10: <Byte name="Temperature">
<Attribtue name="units" type="String">
<value>Counts</value>

</Attribute>
</Byte>

6.3.8 Dataset

A Dataset element contains all the variables and global attributes for a data source. The DDX MUST contain
a Dataset element as its root. A Dataset element MUST be semantically equivalent to the Structure variable;
the rules for encoding the variables in a Structure apply to the variables at the top level of the Dataset element.
See Section 2.2.2 (page 9) for information about the semantics of a Structure. See Section 3 (page 14) about
global and other Attributes.

34

Element Attributes

name [Required] A string containing the name of the variable.

xmlns [Required] A URI containing the default namespace declaration for the XML content of the Dataset
document. At the time of this writing this value should be http://www.opendap.org/ns/OPeNDAP

xmlns:xsi [Required] Maps the namespace identifier xsi to the URI provided in the value. In this case it
should always be set to http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation [Required] Should be set to a pair of values containing the default namespace URI
followed by a URL that when dereferenced will provide the schema for the namespace. The schema
location URL will typically be set to a location on the server that is providing the Dataset document.

origin [Conditional] The “modifier” that created this Dataset. This would be used to indicate that the Dataset
was created by an Aggregation Server of some sort. Used only if this element was added in conjunction
with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Dataset.

Variable Element Declarations [Required] The collection of variables present in the dataset

Child Element Syntax

• Zero or more Attribute elements; followed by

• One or more variable elements; followed by

• One Blob element

See Example 1 on page 24.

6.3.9 dimension

This element appears within Array and Map declarations, and declares the length (and possibly the name)
of a dimension. For multidimensional Arrays or Maps, the first dimension element MUST correspond to the
left-most Array or Map index, et cetera.

Element Attributes

name [Optional] A string containing the name of the dimension.

size [Required] The number of elements in the dimension under consideration.

Child Elements None.

See Example 3 on page 27 and Example 4 on page 27.

35

6.3.10 Enumeration

An Enumeration is used to bind symbols to a set of discrete integral values. Each element of an Enumeration
is called an enumerator.

Element Attributes

name [Required] A string containing the name of the variable.

origin [Conditional] The modifier that added this Binary Image to the document. Used only if this element
was added in conjunction with a Processing Attribute.

Child Elements

enumerator [Required] Used to hold a discrete value of the Enumeration. Each Enumeration MUST have at
least one enumerator element.

Attribute [Optional] The Attributes for this Enumeration.

Child element syntax:

• Zero or more Attribute elements; followed by

• One or more enum elements

• Zero or more Attribute elements; followed by

• One or more enum elements

Example 11: <Enumeration name="error_codes">
<enumerator name="no_such_file" value="0"/>
<enumerator name="insufficient_permissions" value="1"/>
</Enumeration>

6.3.11 enum

This element holds a single enumerator for an Enumeration element.

Element Attributes

name [Required] The name of this enum.

value [Required] The integral value of this enum. Limited to 4, 294, 967, 296 values (2 32).

Child Elements None.

See Example 11.

36

6.3.12 Float32

Declares an IEEE 754 conformant data variable to hold a 32-bit floating-point value. See Section 2.1.4 (page 7)
.

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Float32 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Float32.

Child Element Syntax

• Zero or more Attribute elements

Example 12: <Float32 name="Temperature"/>

6.3.13 Float64

Declares an IEEE 754 conformant data variable to hold a 64-bit floating-point value. See Section 2.1.4 (page 7)
.

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Float64 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Float64.

37

Child Element Syntax

• Zero or more Attribute elements

Example 13: <Float64 name="Temperature">
<Attribtue name="units" type="String">
<value>Degrees_Kelvin</value>

</Attribute>
</Float64>

6.3.14 Grid

Declares a Grid variable (see Section 2.2.3 on page 10). Unlike an Array, a Grid can be indexed using types
other than integers. The mapping between different values and discrete elements of the Grid is given by the
Maps. Within a Grid the correspondence between any dimension of the Grid’s target Array and a Map is made
by insuring that corresponding target Array dimensions and Map dimensions have the same name and size. A
Map is a type of an Array and so has its own dimension element, which MUST be named, and this name is
used to create the binding of the Map to a dimension with the same name in the Grid’s target Array. While
the naming of the dimensions establishes the relationship between Maps and Array components in a Grid, the
dimensions MUST be the same size in order for the mapping to be complete. If two dimensions in a Grid of
the same name do not have the same size an error will be generated.

In order to accommodate the re-use of the components of a Dataset and to streamline the transmission of data
through redundancy reduction, both the target Array and the Map elements of a Grid MAY be replaced with an
Alias variable. In both cases the Alias MUST refer to an Array type (either an Array or a Map) somewhere else
in the Dataset. The rules about naming and size for the constituent dimensions of the Grid components will be
evaluated against the source of the Alias reference as if they where actually components of the Grid. (see the
comments in Example 14 on page 39,

Example 15 on page 39, and Example 16 on page 40).

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Grid to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Grid.

Map [Required] The maps for this Grid. These can be thought of as the independent variables for the Grid’s
Array. There MUST be at least one map and no more than N where N is the rank of the Grid’s Array.

Child element syntax:

38

• Zero or more Attribute elements; followed by

• Zero or one Array element; followed by

• Zero or more Map elements; followed by

• Zero or more Alias elements.

Each dimension of the target Array MUST have one or more corresponding Map dimensions of the same name
and size. If a Map has multiple dimensions, then each one MUST be a valid Map dimension for one of the
dimensions in the target Array. An Alias that refers to an Array of the correct size and shape MAY replace any
or all of Map elements and/or the Array element.

Here’s a Grid containing a two-dimensional target array and two one-dimensional map arrays.

Example 14:

This example shows a typical Grid. All of the Grid components, the target Array and the Maps, are declared
as members of the Grid element.

<Grid name="v">
<Array name="temp">

<Byte/>
<dimension name="lat" size="5"/> <!-- bound to the Map dimension named "lat" -->
<dimension name="lon" size="5"/>

</Array>
<Map name="y"> <!-- this name does not matter -->

<Float64/>
<dimension size="5" name="lat"/> <!-- this name completes the association -->

<Map name="x">
<Float64/>
<dimension size="5" name="lon"/>

</Map>
</Grid>

Example 15:

This example shows a Grid where the target Array element is actually an Alias to an Array outside of the Grid
element.

39

<Array name="temp">
<Byte/>
<dimension name="lat" size="5"/> <!-- bound to the Map dimension named "lat" -->
<dimension name="lon" size="5"/>

</Array>
<Grid name="v">

<Alias name="sst" source="/temp" role="Array" />
<Map name="y"> <!-- this name does not matter -->

<Float64/>
<dimension size="5" name="lat"/> <!-- this name completes the association -->

</Map>
<Map name="x">

<Float64/>
<dimension size="5" name="lon"/>

</Map>
</Grid>

Example 16:

This example shows a Grid where all of the member elements (the target Array and the Maps) are actually an
Aliases to a Arrays outside of the Grid element.

<Array name="temp">
<Byte/>
<dimension name="lat" size="5"/> <!-- bound to the Map dimension named "lat" -->
<dimension name="lon" size="5"/>

</Array>
< Array name="y"> <!-- this name does not matter -->

<Float64/>
<dimension size="5" name="lat"/> <!-- this name completes the association -->

</Array >
< Array name="x">

<Float64/>
<dimension size="5" name="lon"/>

</Array >
<Grid name="v">

<Alias name="sst" source="/temp" role="Array" />
<Alias name="NS" source="/y" role="Map" />
<Alias name="EW" source="/x" role="Map" />

</Grid>

6.3.15 Int16

A 16-bit signed (twos-complement) integer. See Section 2.1.1 (page 5) .

40

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Int16 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Int16.

Child Element Syntax

• Zero or more Attribute elements

Example 17: <Int16 name="Temperature"/>

6.3.16 Int32

A 32-bit signed (twos-complement) integer. See Section 2.1.1 (page 5) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Int32 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Int32.

Child Element Syntax

• Zero or more Attribute elements

Example 18: <Int32 name="Temperature"/>

6.3.17 Int64

A 64-bit signed (twos-complement) integer. See Section 2.1.1 (page 5) .

41

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Int64 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Int64.

Child Element Syntax

• Zero or more Attribute elements

Example 19: <Int64 name="Temperature"/>

6.3.18 Map

This declaration creates a Map used in a Grid. See Section 2.2.3 (page 10) for a description of Grids. Also see

Example 14 on page 39, Example 15 on page 39, and Example 16 on page 40. A Map is a special case of the
Array element; it has the same Attributes and child elements but MUST appear inside a Grid.

Element Attributes

name [Required] A string containing the name of the Map variable. The relationship between the dimension(s)
of the Map and the target Array of the Grid is established through the names of the Map dimensions.
The name of the Map is not used to establish the relationship, but should be used in some informative
manner for the user. See Example 14 on page 39.

Child Elements

dimension [Required] Each dimension element corresponds to a dimension of the Map. The order of the
dimension elements indicates the order of the dimensions of the Map. As is the case with ANSI-C[?]
and C++[?], the rightmost/last dimension varies fastest. At least one dimension element is REQUIRED;
there is no upper bound on the number of dimension elements

Attribute [Optional] The Attributes for this Map.

Template variable declaration [Required] A Map MUST have one template variable which MAY be any type
except that it MUST NOT be an Alias or an Array itself. The name attribute of the template variable is
optional, and MUST be ignored if used. The name of the Map is defined by the name attribute of the
Map element. The template variable is not directly accessible through the data model.

42

Child Element Syntax

• Zero or more Attributes followed by

• One template variable element followed by

• One or more dimension elements.

6.3.19 Sequence

A Sequence is an ordered set of entries. Each instance of an entry is comparable to a Structure variable. Each
entry in a Sequence contains the same set of variables. A Sequence can also be thought of as a relational
database table, with each entry corresponding to a single row.

See Section 2.2.4 (page 11) for a description of the Sequence type.

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Sequence to the document. Used only if this element
was added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Sequence.

Variable declaration [Required] A Sequence MUST have one or more Variable declarations. They MAY be
any type of variable.

Child Element Syntax

• Zero or more Attributes; followed by

• One or more variable elements

Example 20: <Sequence name="gallimaufry">
<Float64 name="measurement"/>
<Array name="measurement_collection">
<Int16/>
<dimension size="32"/>
<dimension size="45"/>

</Array>
</Sequence>

43

6.3.20 String

A series of Unicode (UTF-8) characters. See Section 2.1.5 (page 7) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this String to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this String.

Child Element Syntax

• Zero or more Attributes

Example 21: <String name="Name"/>

6.3.21 Structure

An ordered set of variables. See Section 2.2.2 (page 9) for a description.

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Structure to the document. Used only if this element
was added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Structure.

Variable declaration [Required] A Structure MUST have one or more Variable declarations. They MAY be
any type of variable.

Child element syntax:

• Zero or more Attributes; followed by

44

• One or more variable declarations

Example 22: <Structure name="person">
<String name="name">
<Float64 name="height">
<Int32 name="age">

</Structure>

6.3.22 Time

A variable which contains an ISO 8601 time string[?]. A Time can contain only characters that legal for an
ISO 8601 time string. Currently, this is limited to single-byte US-ASCII (7-bit) characters. See Section 2.1.5
(page 7) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this Time to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Time.

Child Element Syntax

• Zero or more Attributes.

Example 23: <Time name="Sample_time"/>

6.3.23 UInt16

An unsigned 16-bit integer. See Section 2.1.1 (page 5) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this UInt16 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

45

Child Elements

Attribute [Optional] The Attributes for this UInt16.

Child Element Syntax

• Zero or more Attributes

Example 24: <UInt16 name="Temperature"/>

6.3.24 UInt32

An unsigned 32-bit integer. See Section 2.1.1 (page 5) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this UInt32 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this UInt32.

Child Element Syntax

• Zero or more Attributes

Example 25: <UInt32 name="Temperature"/>

6.3.25 UInt64

An unsigned 64-bit integer. See Section 2.1.1 (page 5) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this UInt64 to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

46

Child Elements

Attribute [Optional] The Attributes for this UInt64.

Child Element Syntax

• Zero or more Attributes

Example 26: <UInt64 name="Temperature"/>

6.3.26 URL

A variable which contains a URL. A URL MUST only contain characters that are legal parts of an internet
URL. Currently, this is limited to single-byte US-ASCII (7-bit) characters. See Section 2.1.5 (page 7) .

Element Attributes

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

origin [Conditional] The modifier that added this URL to the document. Used only if this element was
added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child Elements

Attribute [Optional] The Attributes for this Url.

Child Element Syntax

• Zero or more Attributes

Example 27: <URL name="SST_data_server"/>

6.3.27 Time

A variable which contains an ISO 8601 time string[?]. A Time MUST contain ONLY characters that legal for
an ISO 8601 time string. Currently, this is limited to single-byte US-ASCII (7-bit) characters. See Section 2.1.5
(page 7) .

Element attributes:

name [Conditional] A string containing the name of the variable. May (and should) be omitted if the element
is being used as the template variable declaration for an Array.

47

origin [Conditional] The modifier that added this Binary Image to the document. Used only if this element
was added in conjunction with a Processing Attribute. See Section 3.2 (page 15) .

Child elements:

Attribute [Optional] The Attributes for this Time.

Child element syntax:

• Zero or more Attributes

Example 28: <Time name="Sample_time"/>

6.3.28 value

Use this tag to identify the value of an Attribute element. See Example 5 on page 30.

Variable values are recorded in the Blob object, while Attribute values are recorded directly in the DDX. This
means that Attribute values MUST be able to be represented in a (UTF-8) text file. 19

Element Attributes None.

Child Elements None.

Example 29: <value>3.1415</value>
<value>2.718</value>

6.4 Encoding Rules

[This section is a first stab, we expect that as we implement code to support this specification we will have to
change (and add to) the Encoding Rules.]

There are several encoding schemes that need to be applied to various XML components of the DAP. At the
end of the list is the encoding for XML. Other encodings MUST be applied to different parts of the DDX.

19Are we capable of supporting UTF-8 attribute values? jhrg 12/17/03

48

6.4.1 Attribute and variable Alias source attribute encoding

The source attribute a variable Alias and the source attribute of an Attribute of type alias are both fully
qualified names. Since fully qualified names use the slash (“/”) character as the delimiter between variable
(and Attribute) names it is necessary to specially identify this character when it appears as part of a legitimate
variable (or Attribute) name in the DDX document (which must eventually be parsed by software). This identi-
fication is called “escaping the character”, and is achieved by using a different character that will be interpreted
to have the meaning of “escape”. The backslash (”\”) is the escape character. The the slash (“/”) and backslash
(”\”) MUST be escaped if they appear as part of a node name in the absolute path. This encoding MUST be
applied prior to any additional encoding needed to make the representation XML compatible, and must persist
after XML decoding.

6.4.2 Project element variable encoding

This is the same as Section 6.4.1 (page 49) .

6.4.3 Select element target encoding

This is the same as Section 6.4.1 (page 49) .

6.4.4 Base 64 Attribute value encoding

In order to decrease the total number of bytes in a DDX response it is possible that we may choose to transmit
Attribute values in their serialized binary form (see Section 6.5 on page 50). To do so, and still include them in
the DDX, we will have to encode them into a form that allows them to be represented as UTF-8. Most likely
this will achieved by using a base-64 encoding.

6.4.5 XML document encoding

After all of the previous encodings have been applied to the appropriate parts for the document the document
must be brought into a correct encoding for XML. This means that any content (as opposed to XML syntax
characters) must be so encoded. This includes the values of XML element attributes and the content of XML
elements. This encoding is minimally:

• The < (less than) character is replaced with <

• The > (greater than) character is replaced with >

• The & (ampersand) character is replaced with &

• The ’ (apostrophe) character is replaced with '

• The ” (double quote) character is replaced with "

And may in fact be more extensive. See [?] for more detailed information.

49

6.5 Blob

The Blob contains the serialized data represented by the DDX. XML documents like the DDX cannot efficiently
transmit binary data [?], so a DAP DDX simply references an object that contains the data described in the
DDX. Every DDX MUST contain a Blob reference although a data source is under no obligation to create the
Blob until a client requests it (by dereferencing the Blob’s URL). 20 The Blob is a way of accessing the data
‘out-of-band’ with respect to the DDX. In addition to eschewing the problems of processing large volumes of
binary data with an XML parser, out-of-band access enables servers to support streaming in conjunction with
protocols such as SOAP[?].

Data values associated with variables appear in the Blob in the order in which the variables are declared in the
associated DDX. The DDX always contains a Dataset element as its root. A Dataset element is semantically
equivalent to the Structure variable; the rules for encoding the variables in a Structure apply to the variables at
the top level of the Dataset element.

The Blob is not self-documenting. A client program will be unable to make sense of it without the decla-
rations in the accompanying DDX, since the variable types, sizes, and ordering determined from the struc-
ture/organization of the associated DDX.

NOTE: The DDX may be used to define a C++, Java, etc., object which may then be used by a DAP
client to allocate memory for the variables it declares. A DDX which has been created, but before
the Blob object has been received is said to be an “empty” DDX. After the Blob arrives and its
data has been decoded and parceled out to the memory in the DDX, the DDX is said to be “full.”

6.5.1 Length Specification: Representing lengths of encoded data elements

When values are encoded for transmission, they are often preceded by length information. For example, an
Array is prefixed by the number of elements in the Array. Instead of representing this information in a fixed-
size integer data type, the DAP encodes length information in a way that allows any length to be represented.
These are called DAP Length Specifications and are defined as follows:

Each byte of the length specification MUST be divided into two parts: the high-order bit MUST
indicate whether another byte follows, and the low-order seven bits MUST provide the length.
Higher-order bytes MUST preceed lower-order bytes (i.e., the representation MUST be bigen-
dian).21. A two-byte specification of a 500-byte image would be 10000011 01110100 (0x83 0x74),
for example, while a 20-byte image would only need one byte of length information: 00010100
(0x14). Length specifications can use any number of bytes.

Length Specifications MUST be used to specify the size of variable length entities throughout the Blob encod-
ing.

6.5.2 Blob framework and reliable error delivery

The Blob response is a multi-part MIME document[?]. The Blob MUST contain the Content-Type MIME
header and MUST give the content type as multipart/mixed. Each part of the multi-part document MUST

20In many cases no sensible client would request the Blob associated with a DDX which describes an entire data source and it’s likely
that a sensible server would return an ErrorX if a client did try to request such a Blob.

21What if the client and server negotiate byte order and decide to use little-endian notation? jhrg 12/17/03

50

have a Content-Length header which indicates the total number of bytes in this part and MUST have a
Content-Type MIME header and the type of that header MUST be application/octet-stream or it
MUST text/plain. The application/octet-stream indicates that binary data are contained in this part
of the document and MUST be interpreted as described in Section 6.5.3 (page 51) and Section 6.5.4 (page 51)
. If the type is text/plain, then the content MUST be an ErrorX document.

The Blob response is encoded using a multi-part MIME document to ensure reliable delivery of error messages
if servers stream responses to clients. A server can iteratively build chunks of the total response and include
that in the Blob as the next part. If an error is discovered, that can be sent instead. A server is free to choose
the size for each part and is free to build Blob responses with only one part.

6.5.3 Atomic Types

The DAP atomic data types are encoded as follows. All data MUST be encoded using big-endian byte order
UNLESS that is modified using the client-server negotiation options described in Section 5.1 (page 22) .

Integer types Signed integers: Twos-complement; unsigned integers: straight binary. The Boolean and Enu-
meration types MUST be sent as unsigned 32-bit integers.22

Floating-Point types IEEE 754

String types Strings: Unicode, UTF-8, prefixed by a Length Specification indicating the length in bytes of
the string. The URL and Time types MUST be limited to US-ASCII characters, prefixed by a Length
Specification indicating the length in bytes.

Binary images A Binary Image MUST be sent as a sequence of bytes, prefixed by a Length Specification
indicating the length in bytes of the Binary Image.

6.5.4 Constructor Types

The constructor types are encoded as follows. See above for instructions about how to encode the atomic types.
Note that Alias variables are omitted from the Blob. They are reconstructed using the DDX.

Array Array members MUST be encoded in row-major order (rightmost subscript varies fastest). The Array
MUST be preceded Length Specification indicating the the number of elements (not the number of bytes)
in the Array. The size of each element MUST be derived from the declaration in the DDX. Arrays of
String, URL or Time values MUST include the Length Specification.

Structure Members MUST be placed in order of declaration, with no boundary values. Alias variables MUST
be omitted. (There is no place holder for them in the Blob. They are reconstructed using the DDX.)

Grid Grids, which are essentially special cases of the Structure type, MUST be recorded in the same fashion
as Structures.

22The Boolean type could conceivably be sent in a single bit, but decoding that may be inefficient for some architectures. A transport
protocol that supports compression may achieve the same reduction in size.

51

Sequence Each entry in a Sequence is recorded like a Structure, EXCEPT that each entry MUST be preceded
by a single “Start-of-Instance” flag byte (value 0x5a), and the entire Sequence MUST be end with an
“End-of-Sequence” flag byte (same value: 0x5).

For example, a schematic view of the data and flags for the three element sequence:

<Sequence>
<Int32 name="Var1">
<Int32 name="Var2">
<Int32 name="Var3">

</Sequence>

looks like:
<SOI><Var1><Var2><Var3>
<SOI><Var1><Var2><Var3>
<SOI><Var1><Var2><Var3>
<EOS>

For a nested Sequence (a Sequence which contains a Sequence as a child element) such as:

<Sequence>
<Int32 name="Var1">
<Int32 name="Var2">
<Sequence>
<Int32 name="Var3">
<Int32 name="Var4">

</Sequence>
</Sequence>

the schematic representation looks like:

<SOI><Var1><Var2>

<SOI><Var3><Var4>
<SOI><Var3><Var4>
<EOS>

<SOI><Var1><Var2>

<SOI><Var3><Var4>
<SOI><Var3><Var4>
<EOS>

<SOI><Var1><Var2>

<SOI><Var3><Var4>
<SOI><Var3><Var4>
<EOS>
<EOS>

Note that the outer sequence has three instances and each of those includes the inner Sequence.

52

6.6 ErrorX

The ErrorX object is an XML document containing information about any errors that may have been encoun-
tered by the server while processing a request. For any request, a server MAY return an ErrorX response in
place of the normal response (e.g., instead of the DDX).

The ErrorX object MUST contain:

Offending request information This is the complete URL, including payload (constraint expression), or the
POST data in effect at the time. The intent is that there should be enough information to reproduce the
error.

Text message A description of the problem.

The ErrorX object is an XML document used to signal a DAP client that the server has encountered an error of
some kind.

6.7 ErrorX XML Elements

An ErrorX object can contain the following XML elements.

6.7.1 Error

Describes the type of error encountered. The element MUST contain a short text description with the descrip-
tion attribute, OR a longer description enclosed.

Element Attributes

code A number, from a set of well know error numbers, associated with this error. See Appendix Section B
(page 61) for a list error numbers and their meanings. [required]

Child Elements

request [Required] Contains the Base URL given that triggered the error.

description [Optional] Contains a short description of the error condition.

constraint [Required if a constraint expression is presnet] Contains the constraint condition of the request that
triggered the error. This is a string containing an index value corresponding to the index value of the
Constraint element.23

23What is the ‘index value’ here? jhrg 12/17/03

53

Child Element Syntax

• One request element; followed by

• Zero or One description element; followed by

• Zero or One constraint element

Example 30: <Error code="404">
<description>Not found</description>
<request>http://dods.org/data.nc</request>
<constraint>\emph{huh? What is the index element stuff?}</constraint>

</Error>

6.8 Server Capabilities Document

NOTE: We’re going to be careful about the name ‘Capabilities’ since OpenGIS may have trademarked
that. 10/21/03 jhrg

A DAP server MUST be equipped to respond to a client request for an XML document describing the charac-
teristics and capabilities of that server.

The Server Capabilities Document MUST contain information about the DAP version. It MAY contain soft-
ware implementation version information. The Server Capabilities Document MUST contain a description of
ANY constraint expression function which is intended to be publically accessible (servers are free to include
constraint expression functions for internal/experimental use and not document them in the Server Capabilities
Document).

6.9 Server Capabilities Document XML Elements

The XML syntax of the returned capabilities document is as follows:

6.9.1 Description

This element MUST include documentation too long to include as an attribute to the Function element.

Element Attributes None.

Child Elements None.

54

6.9.2 Function

The Function declaration MUST identify a function a client program can use in a constraint expression. The
server MUST identify any part of the constraint expression that looks like function(arg1,arg2,arg3) as a
function. If a function has no parameters, an empty set of parentheses MUST be included.

If the Function element has parameters, their declarations MUST be contained in its declaration. There
SHOULD also be a text description of the Function. Short descriptions MAY be included as a Function at-
tribute, while longer ones MAY be included in a Description element in the Function body.

Element Attributes

name [Required] A string identifying the name of the function. You should try to pick a name unlikely to
cause confusion. The best idea is to pick a brief acronym with which to identify your server or project,
and prefix all function names with those letters. That is, don’t call your new function exp(). Instead call
it something like GDSexp().

type [Required] The type of data returned by the function. This MUST be one of the DAP data types
(Section 2 on page 4) or one of the special words ‘AtomicType’ or ‘AnyType’. Functions to be used in
the selection clause of a constraint expression should return Boolean.

Child Elements

Description [Optional] Used to provide a detailed description of the function.

Parameter [Optional] Used to describe an input parameter for the function.

Child Element Syntax

• Zero or one Description; followed by

• Zero or more Parameters

6.9.3 Parameter

Use the Parameter element to list the formal parameters (in order) needed by this function.

Element Attributes

name [Optional] A name by which to refer to a formal parameter. This is a documentation convenience, and
there is no default value.

type [Required] The type of the parameter. This type MUST be one of the DAP data type names (Section 2
on page 4). Note that the value of the type attribute is just the name of the type (e.g., Grid, Array, et
c.) and does not include information about the size of an Array or the names of the fileds in a Structure.
Because it simplies the interface to a function, it is possible to use the special words SimpleType and
AnyType in place of one of the DAP type names. The word SimpleTypemeans that the actual parameter
MAY be of any of the atomic types. The word AnyType means that the actual parameter MAY be of any
of the DAP data types.

55

repeats [Optional] If present and assign the value true, this attribute indicates that the parameter MAY
appear once or any number of times greater than once. If not present the parameter MUST appear once.

description [Optional] A brief text description of this parameter. This is a documentation convenience, and
there is no default value.

Child Elements None.

Example 31: <Function name="average" type="Float64">
<description>This function averages a group of Float64
values.</descritpion>
<parameter type="Float64" repeats="true"/>

</Function>

Example 32: <Function name="mean" type="Float64"> <description>This function averages a
group of values; it is more liberal about its parameter types than average.
It will return an ErrorX if called with non-numeric actual
parameters.</descritpion> <parameter type="SimpleType" repeats="true"/>
</Function>

6.9.4 Version

The Version element indicates the version of some entity associated with the server in question. The Server
Capabilities Document response MUST contain the version of the DAP; other version elements MAY be used
to include the versions of other things (such as implementation software). Note that the versions of specific data
sources SHOULD be included in the Attributes for those data sources, not in the version information returned
here.

Element Attributes

value [Required] A string containing the version number or name.

entity [Required] A string containing the name of the specification/standard, software or data source to
which this Version element refers. The string DAP is reserved to refer to the DAP and indicates the
version of the protocol, not the implementation. Any other value is at the discretion of the software
implementor (for software version) or server administrator.

Child Elements None.

Example 33: <Version entity="DAP" value="4.0"/>
<Version entity="OPeNDAP_netCDF_server" value="6.4"/>

56

7 Constraint

The DAP uses a single request document to supply information to a server about a request for data. Recall
in Section 4 (page 16) that the DAP uses constraint expressions to limit data accessed to specific variables, or
parts of variables, in a Dataset.

Each constraint is broken into two clauses, the projection clause and the selection clause. Each of the clauses
is further broken down into sub-clauses. A projection clause is simply a collection of one or more Project
elements, and a selection clause consists of one or more Select elements. If no Project elements are present
(the projection clause is omitted), the server MUST return all the variables in the data source. If the selection
clause is omitted, all instances (values) of the variables specified in the projection are returned.

It is reasonable for the Constraint element to be empty, as this will cause the server to return the complete
description (DDX) for the Dataset. From this the user would typically form the projection clauses and selection
clauses to constrain the information. A second request would then follow, this time with a more complex
Constraint.

A client can ask the server to omit the Attribute information from a DDX by adding a NoAttributes element to
the Constraint. See Section 7.2 (page 60) for examples.

7.1 Constraint XML Elements

Following is a description of each element used in a constraint expression.

7.1.1 Constraint

This element contains the two component clauses of the constraint expression: the projection and the selection.
The projection clause specifies which variables are to be returned, and the selection clause helps select among
the variable values. See page 16.

Element Attributes

name [Required] An identifying string for the constraint expression.

Child Elements

NoAttributes [Optional] Informs server to strip all Attribute information from the returned DDX.

Project [Optional] Identifies a variable to be returned the client. See Section 7.1.4 (page 59)

Select [Optional] Specifies what conditions need to be met for an instance of the set of projected variables to
be returned to the client. See Section 7.1.5 (page 59)

Child element syntax:

• Zero or one NoAttributes element; followed by

57

• Zero or more Project elements; followed by

• Zero or more Select elements

See Section 7.2 (page 60) for examples of complete constraint expressions.

7.1.2 Hyperslab

Use this element to measure off a rectangular subsection (sometimes called a hyperslab) of a Grid, Array, or
Sequence variable. See Section 4 (page 16) . There MUST be only one Hyperslab element for each dimension
of the Grid. If a Hyperslab element is missing, that dimension will be returned whole. See Example 37 on
page 60.

A single Hyperslab element MAY also be used to subsample a Sequence.

Element Attributes

dimension [Optional] The name of the dimension to sample with the parameters given in this Hyperslab
element. This name MUST only apply to Grid variables or Arrays with named dimensions. If the name
is omitted, the order of the Hyperslab elements MUST be the same as the order of the variable dimension
declarations.

start [Optional] The first index to return. If omitted, zero MUST be assumed.

stop [Optional] The last index to return. If omitted, the dimension maximum MUST be assumed.

stride [Optional] Use the stride to skip Grid rows (or columns or hyperslabs). If omitted, a value of one
MUST be assumed. If present, stride causes sampling to begin at start (or zero if there is no start present)
and then skip to start + stride, start + 2 ∗ stride, et cetera.

Child Elements None.

Example 34: <Constraint>
<Project variable="/temp">

<Hyperslab dimension="time" start="1" stop="100" stride="5"/>
<Hyperslab dimension="depth" start="20" stop="40"/>

</Project>
</Constraint>

7.1.3 NoAttributes

This element is used to eliminate the Attribute content from the returned DDX. This is intended to be used by
clients making multiple requests of the same Dataset and thus do not need to have the Attribute elements sent
multiple times.

Element Attributes None.

58

Child Elements None.

Example 35:

This constraint expression will return a DDX of the entire Dataset minus any Attribute information.

<Constraint>
< NoAttributes />

</Constraint>

7.1.4 Project

This element identifies a variable to be returned to the client. This element MUST be EITHER a variable in
the Dataset, OR a function, which, when evaluated, returns a value which is then returned by the server as if it
were data. Projection functions MUST be identified in the server’s Server Capabilities Document.

Contains: Zero or more Hyperslab elements.

A Project element MUST have AT LEAST one of either a variable OR a function BUT NOT BOTH.

Element Attributes

function [Optional] A function invocation. The function’s return value (which can take any DAP data type)
is returned to the client. Note: When variables are passed to a function, the variables MUST be passed
using their fully qualified name. See Section 2.3.2 (page 13) for more on fully qualified names.

variable [Required] The fully qualified name of the variable to be returned. See Section 2.3.2 (page 13) for
more on fully qualified names.

Child Elements

Hyperslab [Optional] Describes a sub-sample of a Grid, Array, or Sequence variable. See Section 7.1.2
(page 58)

Child Element Syntax

• Zero or more Hyperslab elements

7.1.5 Select

Use this element to define the condition under which a Sequence instance or a Grid element is to be returned.
A Select element specifies a relational operation and two operands to compare with it. See Example 36 on
page 60 and Example 38 on page 60 to see how to select from a Sequence and a Grid, respectively. Note that
the Select MUST explicitly state to which projected variable it applies (using the target attribute).

Contains: Zero or more Hyperslab elements.

59

Element Attributes

condition [Required] A relational expression or a function call. In the case of a function call, the function
MUST return a Boolean type. In the case of a relational expression, the syntax MUST be: operand 1operatoroperand2

where operator is one of: =, !=, <, <=, >, >=, =~ and are defined in Table 6. The operands
operand1 and operand2 maybe variables of any of the atomic types, including fields, constants, or func-
tion calls which return atomic types. Note: When variables are passed to a function it MUST be done so
using their fully qualified name. See Section 2.3.2 (page 13) for more on fully qualified names.

target [Required] The fully qualified name of the variable with which this selection criterion is to be evalu-
ated. See Section 2.3.2 (page 13) for more on fully qualified names.

Child Elements

Hyperslab [Optional] Describes a sub-sample of a Grid, Array, or Sequence variable. See Section 7.1.2
(page 58)

Child Element Syntax

• Zero or more Hyperslab elements

7.2 Constraint examples

Example 36:

This constraint expression is a simple request for temperature and salinity from a Sequence Dataset. This will
return a Sequence containing temperature and salinity pairs where all the salinity values are above 34.0.

<Constraint>
<Project variable="/sample/temp"/>
<Project variable="/sample/salt"/>
<Select condition="/sample/salt>34.0" target="sample"/>

</Constraint>

Example 37:

For sub-sampling gridded data, use the Project element to elaborate a projection clause. This constraint ex-
pression subsamples a Grid, and returns a smaller Grid, where the lat dimension has rows 1,3,5,7 and 9 of the
original Grid, and the lon dimension has all the columns from 20 to 40 from the original.

<Constraint>
<Project variable="/sst">

<Hyperslab dimension="lat" start="1" stop="10" stride="2"/>
<Hyperslab dimension="lon" start="20" stop="40"/>

</Project>
</Constraint>

Example 38:

60

It is also possible to select from a Grid, based on the values of the map arrays. This constraint expression shows
the selection of a Grid called sst. Assuming sst is a two-dimensional array with two one-dimensional maps,
this constraint will return a Grid where all the lat values are above 24.0 and all the lon values are below -50.0.
In addition this constraint expression requests that no Attribute information be sent in the returned DDX.

<Constraint>
<NoAttributes />
<Project variable="/sst"/>
<Select condition="/sst/lat>24.5" target="sst"/>
<Select condition="/sst/lon<-50.5" target="sst"/>

</Constraint>

Example 39:

This constraint expression exercises the Project Function make-sst.

<Constraint>
<Project function="make-sst(/raw-count, 223)"/>

</Constraint>

A XML Schema

The XML schema has not been fully formalized and will appear here (in this section) at later point in this
document’s development.

B Error Codes

The error messages and codes issued by a DAP server are shown in Table 8. They are largely taken from the
HTTP error codes outlined in the HTTP standard. The code and the title MUST be delivered as shown here.
The description MAY be altered if you want to translate it into another language.

Table 8: Error Codes

Code Title Description
400 Bad Request The URL could not be resolved. The host name is

probably incorrect.
401 Unauthorized The resource requested is not available without authen-

tication, and yours has failed.
402 Payment Re-

quired
403 Forbidden
404 Not Found The data file specified in the request is not on the spec-

ified server.
408 Request Timeout

61

Table 8: DAP Error Codes

Code Title Description
409 Conflict
410 Gone
411 Length Required
412 Precondition

Failed
413 Request Entity

Too Large
414 Request-URI Too

Long
500 Internal Server

Error
501 Not Implemented
502 Bad Gateway
503 Service Unavail-

able
504 Gateway Timeout

C Change log

Revision 1.61 2003/10/30 02:42:49 ndp
*** empty log message ***

Revision 1.60 2003/10/29 22:58:25 ndp
*** empty log message ***

Revision 1.59 2003/10/29 19:16:24 ndp
*** empty log message ***

Revision 1.58 2003/10/29 01:49:50 ndp
*** empty log message ***

Revision 1.57 2003/10/28 01:39:34 ndp
*** empty log message ***

Revision 1.56 2003/10/28 00:54:33 jimg
check point

Revision 1.55 2003/10/27 15:13:08 ndp
*** empty log message ***

Revision 1.54 2003/10/26 19:41:51 ndp
*** empty log message ***

Revision 1.53 2003/10/24 23:51:25 ndp
*** empty log message ***

Revision 1.52 2003/10/24 23:21:46 jimg
check point

Revision 1.51 2003/10/24 22:17:52 ndp
*** empty log message ***

Revision 1.50 2003/10/24 21:25:20 ndp
*** empty log message ***

Revision 1.49 2003/10/24 20:14:46 ndp
*** empty log message ***

Revision 1.48 2003/10/24 20:04:37 jimg
check point; some minor, annoying, fixes.

Revision 1.47 2003/10/24 18:34:23 jimg
Fixed a misspelled latex command (hosed and ’end description’)

Revision 1.46 2003/10/24 18:29:46 jimg
Added text for the ’information model’ of CE.

63

Revision 1.45 2003/10/23 23:48:08 ndp
*** empty log message ***

Revision 1.44 2003/10/23 23:43:52 ndp
*** empty log message ***

Revision 1.43 2003/10/22 22:55:39 jimg
I’ve reorganized the Response section (which is still called the Objects
section) so that Version is part of Capabilities. I’ve moved Client Server
Interaction so that it follows the data model and split the CE section into
two parts, one that’s part of the Data model half of the spec and one that’s
part of the XML syntax half. There’s still tons to do...

Revision 1.42 2003/10/22 02:08:23 jimg
check point

Revision 1.41 2003/10/21 23:59:17 ndp
*** empty log message ***

Revision 1.40 2003/10/21 23:48:47 ndp
*** empty log message ***

Revision 1.39 2003/10/21 23:30:40 jimg
check point

Revision 1.38 2003/10/21 21:55:00 ndp
*** empty log message ***

Revision 1.37 2003/10/21 20:35:46 ndp
*** empty log message ***

Revision 1.36 2003/10/21 15:24:14 jimg
check point

Revision 1.35 2003/10/17 23:33:52 ndp
*** empty log message ***

Revision 1.34 2003/10/17 00:46:22 ndp
*** empty log message ***

Revision 1.33 2003/10/16 23:56:07 ndp
*** empty log message ***

Revision 1.32 2003/10/16 23:51:45 jimg
Added more detail to the subsection onthe Blob.

Revision 1.31 2003/10/16 21:23:35 ndp

64

*** empty log message ***

Revision 1.28 2003/10/16 16:45:32 jimg
check point...

Revision 1.27 2003/10/15 23:15:39 jimg
check point

Revision 1.26 2003/10/15 15:26:29 jimg
check point

Revision 1.25 2003/10/15 00:01:03 jimg
check point

Revision 1.24 2003/10/14 22:23:35 jimg
... changes to Section three.

Revision 1.23 2003/10/14 22:21:41 jimg
... the start of some changes to Section three.

Revision 1.22 2003/10/14 00:14:54 jimg
Changes to Sections 1 and 2. I’ve added the atomic types Enumeration, Boolean
and Time. Also, I moved tom’s note about unlimited sizes to the section
about blobs and made it part of the spec. I _think_ I have changed all the
size specifications in Section 2 to say ’the unlimited size thing.’

Revision 1.21 2003/09/23 16:49:38 ndp
*** empty log message ***

Revision 1.20 2003/09/18 22:56:06 ndp
Added comments...

Revision 1.19 2003/09/18 15:57:01 jimg
Fixed problems which prevented pdflatex from running. It seems pdflatex is
pickier about latex errors than just plain latex...

Revision 1.18 2003/09/17 22:42:24 jimg
Changes. There are a number of issues which need to be resolved; some are
mentioned in the text as Notes, others are parts of the DAPFourSpec topic on
our TWiKi.

Revision 1.17 2003/07/24 22:32:12 tom
excised dap_services document references

Revision 1.16 2003/07/16 04:06:25 tom
incorporated all known change requests

Revision 1.15 2003/07/16 01:06:08 tom

65

progress on comments, fixed titles

Revision 1.14 2003/06/10 16:13:53 tom
incorporated suggestions from March meeting

Revision 1.13 2003/06/10 01:00:04 tom
CE syntax fixes

Revision 1.12 2003/06/05 21:00:58 tom
changed CE syntax

Revision 1.11 2003/05/31 01:30:18 tom
fixed constraint expression description in dap_objects to be XML

Revision 1.10 2003/05/28 21:06:50 tom
progress 5/28

Revision 1.9 2003/05/23 21:50:52 tom
progress made

Revision 1.8 2003/05/22 19:37:30 tom
rearranging

Revision 1.7 2003/04/10 16:10:21 tom
modifications at opendap meeting

Revision 1.6 2003/03/19 21:48:06 tom
progress made, ready for the March 03 DODS mtg

Revision 1.5 2003/03/17 17:45:10 tom
progress made. draft for discussion 3/18/03

Revision 1.4 2003/03/13 17:35:15 tom
progress made. not finished

Revision 1.3 2003/03/03 05:34:28 tom
progress entry

Revision 1.2 2003/02/28 20:59:32 tom
progress made, 2/28

Revision 1.1 2003/01/14 19:55:31 jimg
Added.

66

