National Center for Atmospheric Research (NCAR)

High Altitude Observatory (HAO)

Boulder, CO.

Building a new OPeNDAP BES Module

User's Manual

This manual will guide you through how to create an OPeNDAP Server. It contains information about what files to create, what functions are needed, and the usage of the createServer script, which creates a lot of the code for you. All you have to do is fill in the blanks. I is assumed that you have an understanding of the OPeNDAP data model. If not, please go to http://www.opendap.org.

Patrick West

pwest@hao.ucar.edu
This document will cover the creation of a new BES module using the besCreateModule script. It is quite simple to create a new module, once you understand the power of the BES framework.

For more information on the server architecture, please refer to the document BES_Server_Architecture.doc. For more information on configuration the BES server, please refer to the document BES_Configuration.doc.

1. Creating a new OPeNDAP module

We have provided you with a script that can build code that will immediately compile. This script will create source code files that you will eventually add your code to, and some code that will not need to be changed, as well as configuration scripts and make files.

1.1 Using the besCreateModule script

The besCreateModule script will ask you, the developer, a few simple questions in order to create some default source code. The good thing is, once this code is written you can run make and your code will build. Of course, it won’t do much because you need to write specific code to provide OPeNDAP objects for the requested data. There are no parameters to the script, so, from the command line, do the following:

% ./besCreateModule

The script will ask the user the following questions:

% Enter server type, e.g. cedar, fits, netcdf:

So, for example, if you are providing cedar data, you would respond with cedar. Or, if you are providing hdf5 data you would respond hdf5.

The second question is:

% Enter C++ class prefix, e.g. Cedar, Fits, Netcdf:

There are some C++ class files that are created that need a prefix. What do you want that prefix to be? For example, if you are writing a new cedar server then the prefix could be Cedar. We suggest that the first character be uppercase, but does not need to be. Another example, if you are providing hdf5 data, then you could respond HDF5.

And the last question that is asked is:

Enter responses handled by this server (das dds data):

(space separated. help and version are added for you, no need to include them here)

So, if your module will provide OPeNDAP DAS, DDS, and Data objects then you would simply hit enter (default is das dds data). If your module will only provided OPeNDAP data objects, then you would type data. Here is where some of the new extensibility comes in. You could provide a new way of viewing the data. For example, Cedar provides four new response types, tab, flat, info and stream. We’ll explain this in more detail in another document. For cedar, then, you would respond with ‘das dds data tab flat info stream’ (no quotes though!)

Once you have answered these questions, then there are a bunch of files that get created. Let’s say that you enter hdf, HDF, and accept the default for response types (das dds data). The files created are:

HDFModule.cc

HDFModule.h

HDFRequestHandler.cc

HDFRequestHandler.h

HDFResponseNames.h

Makefile.am

configure.ac

bes.conf

If you specified new response types in the last question asked then for each new response type two files will be created:

HDF<response_type>ResponseHandler.cc

HDF<response_type>ResponseHandler.h

A new configuration directory is also created, conf, that holds build configuration files and information.

The besCreateModule script then runs autoreconf, configure, and make. The new code will compile and build the BES module library that can be dynamically loaded into the BES. We are assuming that you have already built the OPeNDAP code (libdap and bes)

And that’s it! The default prefix for configure is the environment variable OPENDAP_ROOT that you set previously.

Now the task is to write the code that will actually build your responses. Of course, you are free to add whatever you need to the configure.ac file and Makefile.am file in order to build your new module. You’ll need to add information about libraries and includes that your project will need.

2. Writing your code

2.1 request handlers

If you did not specify any new response types in the last asked question then there is only one source file that you will need to modify, the RequestHandler.cc file. This is the code where the response objects are populated. For example, if the response object is a DAS object then your request handler will add attribute tables and attributes to the passed DAS object in the build_das function.

We suggest that you create separate source files and functions for each of the response types to be populated. For example, if you are providing das, dds and data response objects then you can provide separate functions in separate source files to do the work and simply call those functions from within your RequestHander class.

2.2 new response types

If you did specify new response types in the last question then for each one of those new response types you will need to modify the source file <response_type>ResponseHandler.cc. This is where you will tell the system how to create the response object.

Let me make sure that you understand the difference here. The request handlers will populate the response object whereas the response handler knows how to create the response object (create only, not populate) and “how” the response object will be populated, such as calling a specific request handler, or all of the request handlers, to populate the response object.

For example, for a DAS response, the response handler creates a DAS response object and then for each container specified in the request the response handler calls the appropriate build function in the request handler that handles that type of container. A different example is the help response. In this case, for each type of data handled by this server (for each request handler), the response handler will call the help build function for that request handler. By default, your new module handles help and version requests.

The response handler also knows how to transmit the response object. For example, the DAS response handler knows to call the send_das method on the transmitter object that is passed to the transmit method of the response handler. This way we can create different ways to transmit the data. For example, transmitting html data to a browser, or transmitting binary data in xdr format, or transmitting plain text data. You can create new transmitter classes with a unique name and specify that you want a response transmitted using your transmitter using that unique name. In your request you would say “return as <unique_name>”.

2.3 other source code extensions

There are more ways that you can extend the BES through your dynamically loaded module. For more information, refer to the section below titled: Other add-ons for your new module.

3. The bes.conf configuration file

Before we actually run the server, there’s one more bit of configuration that you will need to do. The bes.conf file is a file that contains key/value pairs used by the BES. To learn more about the configuration file please read the BES_Configuration.doc document.

4. Starting and stopping the server

Now … you’ve built the new module and you’ve made any changes you want to make to the configuration file, so now you are ready to start the server.

First you need to set yet another environment variable to point to your configuration file. BES provides a default configuration file, which is located in the BES installation directory under etc/bes. So, if you installed the BES into /usr/local, then the default configuration file will be located under /usr/local/etc/bes. The besCreateModule script creates a bes.conf file for you, all you have to do is edit it a bit, and set this environment variable. If using csh:

% setenv BES_CONF /full/path/to/bes.conf

Or, if using sh or ksh:

% BES_CONF=/full/path/to/opendap.ini

% export BES_CONF

And now, to run the new server simply type:

% besctl start

This should start the server, and you should now be ready to connect to it with the command line client. If you want to see some debug information while running the server daemon then:

% besctl start -d cerr

If you are having problems with your installation, or problems retrieving information from the server, we may need for you to run the server with the debug flag turned on, along with verbose logging information that can be turned on in the configuration file.

To stop the BES simply type:

% besctl stop

This will send a signal to shut down the BES.

5. Running the client

First we will issue some simple commands to make sure that the client is talking to the server. First, start the command-line client:

% bescmdln –h localhost -p 10002

The -h option specifies the machine on which the BES is running. In this case, it's your local machine. The -p option specifies the port the BES is running on. The default, set in the BES configuraiton file, is 10002. If you changed this, or if you started the server with the -p option, then you need to use that port number here.

If you just use these options then you will start using the command line version of the client. There are other options, but we’ll start here. From here you should get a prompt. Let’s try a simple command (remember to terminate each command with a semicolon):

BESClient> show status;

You should get a response showing the status of the server:

Listener boot time: MDT Thu Jun 9 14:12:22 2005

Try another one:

BESClient > show help;

This one should show both the OPeNDAP server help file and your help information.

BESClient > exit

This one will exit out of interactive mode.

Other command line options available to the bescmdln program:

-u specifies the name of a Unix socket for connecting to the server.

-h specifies the name of a host for TCP/IP connection

-p specifies the port where the server is listening for TCP/IP connection.

-x makes the client execute a query and exit. This flag requires the -f flag.

-f sets the target file name for the return stream from the server.

-i sets the target file name for a sequence of input commands.

-t sets the timeout in seconds and is optional.

-d cerr|<filename> sets the client session for debugging and is optional.

-v forces the client to show the version and exit

Connection Flags: -u or -p -h are required to connect to a server and specify either a Unix socket or a TCP/IP socket.

Input/Output Flags: you can specify that the input is from the command line with the -x flag or that the input must be read from a file with the -i flag. If you specify either -x or -i you must specify the name of a file for the output stream of the server with the -f flag. If neither the –x nor the -i flags are specified then the client goes into interactive mode. To exit out of interactive mode just type ‘exit’ (without the quotes) at the BESClient> prompt.

6. Client commands

Current core commands available with the BES. Of course, if you added new response types then there will be more commands available under the get command. The default are shown below.

6.1 Current core commands available with BES:

 show help;

* shows this help

 show version;

* shows the version of OPeNDAP and each data type served by this server

 show process;

* shows the process number of this application

 show status;

* shows the status of the server

 show keys;

* shows all keys defined in the dods initialization file

 show containers;

* shows all containers currently defined

 show context;

* shows all context name/value pairs set in the BES

 set container [in <storage_name>] values <symbolic_name>,<real_name>,<container_type>;

* defines a symbolic name representing a data container, usually a file,

 to be used by definitions, described below

* <storage_name> is the name of the container storage. Defaults to

 volatile storage. Examples might include database storage, volatile

 storage based on catalog information.

* <real_name> is the full path to a data file

* <container_type> is the type of data that is in the file. For

 netcdf files it is nc, for cedar it is cedar, etc...

 set context <context_name> to <context_value>;

* set the given context with the given value. No default context are

 available in the BES.

 define <def_name> [in <storage_name>] as <container_list> [where <container_x>.constraint="<constraint>",<container_x>.attributes="<attribute_list>"] [aggregate by "<aggregation_command"];

* creates a definition using one or more containers, constraints for

 each of the containers, attributes to be retrieved from each

 container, and an aggregation. Constraints, attributes, and

 aggregation are all optional.

* <container_list> is a comma separated list of container names.

* <storage_name> is the name of the definition storage. Defaults to

 volatile storage. Examples might include database storage.

* The constraints, attributes and aggregation command must be enclosed in quotes

 delete container <container_name> [from <storage_name>];

* deletes the specified container from the specified container

 storage (defaults to volatile storage).

 delete containers [from <storage_name>]

* deletes all of the currently defined containers from the

 specified container storage (defaults to volatile storage).

 delete definition <definition_name> [from <storage_name>];

* deletes the specificed definition from the specified container

 storage (defaults to volatile storage).

 delete definitions;

* deletes all of the currently defined defintions from the

 specified container storage (defaults to volatile storage).

 ** remember to terminate each command with a semicolon (;)

 For more information please contact Patrick West, pwest@ucar.edu
6.2 Added commands for dap enabled servers:

If you are serving up OPeNDAP data responses (DAS, DDS, DataDDS) then you will have loaded the dap commands in your configuration file. Here are the available commands in the dap module.

 show catalog [for 'node';

* Shows catalog information, including contents if a

 container. If node is not specified then the root node

 information is returned. If node is specified then that nodes

 information is returned. The node name must be in single quotes.

 show info [for 'node';

* Shows catalog information for just that node, the root node

 if no node is specified. If the node is a container the contents

 are not displayed. The node name must be in single quotes.

 get das|dds|dods|ddx for <definition_name> [return as <return_name>];

* dds: request the data descriptor structure

* das: request the data attributes

* dods: request for the data stream, this output is an octec binary

 stream which requires the analysis by the client dods library

 set context errors to <dap2|xml|html|txt>;

* set the context 'errors' to dap2 in order to have all exceptions

 and errors formatted as dap2 error messages in the response.

 ** remember to terminate each command with a semicolon (;)

 For more information please contact Patrick West, pwest@ucar.edu

8. Other add-ons for your new server

In addition to being able to add new response types, as was described above, there is also the ability to add many more modules to your server. Here is a list, and we will describe in more detail each one below.

1. New response handlers. Yes, we’ve already talked about new response types related to your data, but what about new features for your server, such as a new command to show user information, or a new command to manipulate data storage.

2. New ways of storing containers, called container storage. Currently we have built in volatile storage, which means storing new containers only during the duration of your connection with the BES. We also have a way to load containers from a file that can be configured in the initialization file. You could also create user specific container storage, storing container information in a MySQL database, for example.

3. New ways of storing definitions, called definition storage. Currently we have built in volatile storage, which means storing new definitions only during the duration of your connection with the BES. You could also create user specific definition storage, saving off those oft used definitions for later use.

4. Aggregation of data is also possible by adding aggregation handlers to your server.

5. A report mechanism. Once a request has been completed, the information is passed to any reporters that are registered with the server. This way you can save user information, usage information, data access information, and more.

6. Different ways of transmitting the data. The default is to return the data through standard output, which gets redirected back to the client. But, with the “get” command you can specify a “return as” command (see above) that could save the response to a file, transmit it via email, save it in a new data file like netcdf.

7. Add in your own initialization and termination routines. If you have routines that need to be run when the BES starts up, you can add callback functions for initialization and termination.

8. Add in your own exception handling methods. When an exception is thrown within the BES, the exception is handled by the BES Exception Manager. It is possible to register a routine to be called before the default handling is done. This way, if you have a specific way that you want to handle specific exceptions, you can do that here.

And hey, if you feel you’ve created a new, handy dandy add-on to your server that you feel might be useful to others, then we can, or you can, add it to the system. This is open-source software!

8.1 New Response Handlers

So, when building a new server you were able to add new response types for looking at your data. For example, in Cedar we have a tab, flat, and info view that pulls certain information out of the Cedar files and displays them in a certain way.

But you can also add new commands and response handlers outside of the get command. For example, a way of showing user information, or manipulating storage information that could work with an authentication module described in number three above. One could also write debugging modules, like to turn on debugging with different levels of debugging, testing a connection, checking for permissions, etc…

To create your own response handler is relatively easy. You need to add a command to the command list and write a response handler class that knows how to create the response object, and, maybe, a method to your request handler that knows how to fill in the response object.

Let’s use, as an example, our hello world example module, which is available in the SVN repository.

8.2 Creating a new way of storing container information

As we mentioned above, we currently have only one way of storing container information persistently, and that way is that we don’t. It is volatile storage, available only during the life of your client session. But you could create user specific storage/retrieval, or storing and retrieving containers in/from a MySQL database. And here’s how!

Creating the persistence class. Adding the persistence class to the persistence list. How do you reference the container? How do you store a container using this new persistence class. Use the user method as an example. Perhaps we can write this later.

8.4 Aggregating your data

By default there is no aggregation provided in our OPeNDAP server, but there is a plug that allows you to specify one. After the data has been retrieved from the specified sources the aggregation handler is called, allowing the user to aggregate the data.

8.5 Reporting mechanism, the Reporter

OPeNDAP allows you to report on the goings on of your server. You can save information to a file (which is what Cedar does), or you can write information to a MySQL database, or tie it in to a billing application. The information that you can record includes user names, date and time of the request, what the request was, the files accessed by the server, and more.

8.6 Transmitting your data with the “return as” command

The default mechanism of returning data to the user is by simply sending the response object to stdout, which for the standalone server is connected to the client socket connection. But you could, instead, transmit the data to a file, or write the data to a different data type file, or send the information via email.

8.7 Connecting a different way

The client and server that are provided for you use a command syntax, like “show help;” or “get das”, etc… From the command line client you enter these commands, they get sent to the server and a response is sent back. You could write your client/server a different way.

For example, in the Cedar system one traverses the Cedar web site, which builds the commands for you and eventually provides a link. The user clicks on this link and the response is displayed on the screen.

Or, you could write a SOAP interface to your server, providing methods that are invoked by the client and handled by the server.

In Server 4, OPeNDAP provides a Java interface that is connected through a tomcat server. Or you could write a different Java client that is more user-friendly than a command line client.

