National Center for Atmospheric Research (NCAR)

High Altitude Observatory (HAO)

Boulder, CO.

Configuring the OPeNDAP BES

Configuration File Manual

This manual will guide you through how to create an OPeNDAP Server. It contains information about what files to create, what functions are needed, and the usage of the createServer script, which creates a lot of the code for you. All you have to do is fill in the blanks. I is assumed that you have an understanding of the OPeNDAP data model. If not, please go to http://www.opendap.org.

Patrick West

pwest@hao.ucar.edu
This document will describe the different settings within the BES configuration file.

This file is installed in the BES installation directories etc/bes directory. So, if you've installed the BES into /usr/local, then the configuration file bes.conf will be located in /usr/local/etc/bes. If you wish to use a different configuration file from the default one, then simply set the environment variable BES_CONF to point to the location of your bes.conf file. For example, if you have used the createModule script (refer to OpeNDAP_Creating_Module.doc) then a bes.conf file is created for you in your module's directory. Set BES_CONF to point to this file to test your new module.

1. The bes.conf configuration file

The BES configuration file, bes.conf, is a file that contains key/value pairs used by the OPeNDAP BES. For the most part you will need to make only four changes to this file, the first three parameters listed.

1.1 BES administrator

The key OPeNDAP.ServerAdministrator should be set to the email address of the person who will be administrating your OPeNDAP server installation. If error conditions occur within the BES then this email address will be reported as the contact for this installation.

1.2 BES logging

The OPeNDAP.LogName key defines the full path to the BES log file. This log file will keep track of what requests are made and whether they are completed. The default is set to ./bes.log, which will put the bes.log file into the current working directory where the BES was started. The key right below this one, OPeNDAP.LogVerbose, defaults to no, meaning that the system won’t dump debug information to the log file. If this key is set to yes then you will see much more information being dumped to the log file. This can be done in order to determine if there is a problem with the server and where it might be having that problem.

1.3 BES modules

The BES comes with a default set of commands. You can display help information, version information, process information, what keys are currently defined in the BES, you can set containers, create definitions, stream files back, and set context.

The BES provides a mechanism to load new modules into the server, creating ways to access different types of data, new commands, new aggregation, and more. Refer to OpeNDAP_Creating_Module.doc for more information on creating a new BES module.

The parameter BES.modules is set to the name of the modules that you would like to load. This is a comma separated list of names that are used to construct keys in the configuration file used to locate the modules to be loaded. These parameters will be called BES.module.<module_name>, and will be set to the full path to the module library, usually called lib<module_name>_module.so.

There are examples in the bes.conf file. We will present one here as well. let's say you have a netcdf module to be loaded, and this netcdf module handles dap requests. So you would have the following parameters set in the configuration file:

BES.modules=dap,cmd,ascii,usage,www,nc

BES.module.dap=/usr/local/lib/bes/libdap_module.so

BES.module.cmd=/usr/local/lib/bes/libdap_cmd_module.so

BES.module.ascii=/usr/local/lib/bes/libascii_module.so

BES.module.usage=/usr/local/lib/bes/libusage_module.so

BES.module.www=/usr/local/lib/bes/libwww_module.so

BES.module.nc=/usr/local/lib/bes/libnc_module.so

As another example, let's say you are learning to create modules, and you have downloaded the hello_world module. You would have the following parameters set, as this module does not serve dap requests.

BES.modules=say

BES.module.say=/usr/local/lib/bes/libsay_module.so

4.4 data location

There are two different ways that the BES can serve data. The first is as a standalone server and the other is in coordination with the OLFS, which serves THREDDS catalog information.

For the standalone case set BES.Data.RootDirectory to the full path to the data you will be serving. When creating containers that represent files, the path to the data file will be relative to this parameter.

For a BES that works with the OLFS, which serves THREDDS catalog information, you would set BES.Catalog.catalog.RootDirectory to the full path to the root directory for your catalog. This is used only where the catalog is representing a file system. Catalogs can be represented in other ways, such as from a database.

When using the BES.Catalog.catalog.RootDirectory variable, you will also need to set the following parameters.

The TypeMatch parameter is a list of handler/module names and a regular expression separated by a colon. If the regular expression matches an item in the catalog, then the BES uses the associated handler/module. Each <handler>:<regular expression> pair is followed by a semicolon. This parameter is used when creating containers in the BES.

For example, if you are serving netcdf data, and the name of the module is nc, then you might have a TypeMatch:

BES.Catalog.catalog.TypeMatch=nc:.*\.nc$;

And the final two parameters related to catalogs are the Include and Exclude parameters. These parameters specify what files/directories are to be included or excluded from the catalog listing. The Include parameter is applied first, and then the Exclude parameter. Only the Exclude parameter is applied to directories.

By default all files and directories are included except those that begin with a dot (.).

1.5 Connection to the BES

A client can connect to your server either by specifying a port on the server machine or by using a UNIX socket. The key BES.ServerPort is set to the default port that the BES will listen on, defaulting to 10002. This can be over-written from the command line using the -p option to besctl. The key BES.ServerUnixSocket should be set to the full path of your UNIX socket file. The default is /tmp/opendap.socket, which should work fine. This can also be over-written from the command line using the -u option to besctl.

1.6 Running a secure server

The BES can be run as a secure server. If it is then the server will require the client to ??? using SSL certificates and keys.

Set the key BES.ServerSecure to yes if you will be running a secure server.

The SSL connection between the client and the server will occur over the port specified by BES.ServerSecurePort, which defaults to 10003.

The remaining four parameters here represent the location of the SSL certificate and private key files. Two are set if this configuration file is used on the client side, and the other two are set if this configuration is used on the server side. Set these parameters to the full path of the respective files. The parameters are BES.ServerCertFile, BES.ServerKeyFile, BES.ClientCertFile and BES.ClientKeyFile.

1.7 help files

There are three help files that contain information that is returned to a user who makes a ‘show help’ request. One key represents a plain text version of the file. The second represents an HTML formatted help file, and the third represents an XML document response. The keys are BES.Help.TXT, BES.Help.HTTP, and BES.Help.XML. By default, these files are installed in the installation's etc/bes directory. For example, if BES is installed in /usr/local, then these files are located in /usr/local/etc/bes.

There are also help files for the DAP responses. These files are represented by the keys DAP.Help.TXT, DAP.Help.HTTP, and DAP.Help.XML.

1.8 buffering

Should the OPeNDAP server buffer informational requests? That’s what this next key specifies. A value of no means that the information is not buffered and is transmitted as it is added to the informational response object. If set to yes then the information is buffered in the object and not transmitted until all information is gathered.

OPeNDAP.Info.Buffered=no

1.9 Cache and compression

If a data file is compressed the BES will attempt to uncompress the file using the following parameters.

The way that it does this is by executing the specified shell script, as is specified by the BES.Compressed.Script parameter. A default script is provided, so you need not modify this parameter.

To determine if the data file is compressed or not, the BES compares the name of the file to the regular expression specified in the BES.Compressed.Extensions. If none is specified, the default is set to recognize .gz, .Z, and .bz2 compression styles.

The BES will uncompress the data into the directory specified by the parameter BES.CacheDir, which defaults to /tmp.

The BES will also attempt to keep the size of the cache directory to a manageable level. If the size of uncompressed bes files exceeds BES.CacheDir.MaxSize, which defaults to 500 MB, then the BES will attempt to remove the oldest files in the cache until the size is below the specified number.

1.10 Container persistence

A container represents a set of data. For example, a Cedar file is a container of data, a NetCDF file is a container of data. For the most part, a container will represent a file. When defining a request you specify what containers will be used for that request using a container’s symbolic name. What if, when defining a request, the user specifies a container that does not exist? This key defines what to do. The key BES.Container.Persistence can be set to nice, meaning just log a message to the BES log file, or to strict, which means that the system should throw an error message and stop processing the request. The default set in the configuration file is strict.

1.11 Controlling memory usage and supporting exceptions dynamic memory requirements.

The key BES.Memory.GlobalArea.EmergencyPoolSize tells the BES how much memory to reserve for memory exceptions. The fact is that throwing C++ exceptions when memory is exhausted requires yet more dynamically allocated memory so this way we have a small memory pool available for exceptions to work if memory ever does run out. The value should be an integer which represents the number of MB to reserve.

The key BES.Memory.GlobalArea.ControlHeap has possible values of {yes,no}. This key tells the OPeNDAP server whether or not you wish to control the maximum heap expansion for the BES processes. In almost 100% of Unix systems, allocating memory expands the heap (if necessary) so even when you free the memory (no leaks) the heap does not get contracted because free marks your memory blocks as available for your process but it does not return such memory to the OS. You can imagine that the BES process serving a huge amount of data can try to expand its heap to the point of creating process starvation (assuming the process stays alive after handling the request) to other processes running on the machine. It is suggested to set this value to `yes' if you expect heavy loads, otherwise keep it set to `no'.

If you set the key BES.Memory.GlobalArea.ControlHeap to `yes', then you will need to set the key BES.Memory.GlobalArea.MaximunHeapSize. This key tells the BES to expand the process heap to a predetermined value upon initialization. This size remains constant and works in two ways; it assures the server will not take all the memory in your machine and it assures that there is enough memory to work properly. Depending on the size of your containers and the size of the queries you expect to serve (as well as how much memory is available on your machine) you can set this value to an integer between 10 to 400, representing MB.

The key BES.Memory.GlobalArea.Verbose has possible values {yes,no}. This key tells the BES to write extra debugging information in the log so developers and administrators can track memory management.

1.12 Single or multiple client connections at a time

As mentioned in the document BES_Server_Architecture.doc, the BES can process a single client connection at a time or multiple client connections at a time. The key BES.ProcessManagerMethod can be set to either single, which means that only one client can connect at any given time, or to multiple, which means that multiple clients can connect to the server at any one time.

1.13 Connecting with a Browser

The key BES.DefaultResponseMethod is for internal use only and should not be set by the user.

